

SCADA Honeypots – An In-depth

Analysis of Conpot

By:

Arthur F Jicha III

A Master’s Paper Submitted to the Faculty of the

DEPARTMENT OF MANAGEMENT INFORMATION SYSTEMS

ELLER COLLEGE OF MANAGEMENT

In Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

In the Graduate College

THE UNIVERSITY OF ARIZONA

2016

STATEMENT BY AUTHOR

 This thesis has been submitted in partial fulfillment of requirements for an advanced degree

at the University of Arizona.

 Brief quotations from this thesis are allowable without special permission, provided that

an accurate acknowledgement of the source is made. Requests for permission for extended

quotation from or reproduction of this manuscript must be obtained from the author.

SIGNED: Arthur F Jicha III

APPROVAL BY MASTERS PAPER ADVISOR

This Masters Paper has been approved on the date shown below:

 MM/DD/2016

 Dr. Hsinchen Chen Date

 Advisor Title of Management Information Systems

TABLE OF CONTENTS

LIST OF FIGURES .. 5

LIST OF TABLES .. 5

ABSTRACT .. 6

1 INTRODUCTION .. 6

2 PROBLEM DEFINITION / BACKGROUND ... 6

2.1 Literature Review ... 6

2.1.1 Background Area 1 (Honeypots) .. 6

2.1.2 Background Area 2 (SCADA Specific Honeypots).. 7

2.1.3 Research Gaps ... 9

3 EXPERIMENT / METHODOLOGY / CONTENT ... 10

3.1 Introduction / Approach ... 10

3.2 Conpot Setup .. 10

3.2.1 Image Creation .. 10

3.2.2 Amazon Web Services Deployment ... 13

3.2.3 Work completed (Process) .. 15

3.3 Data or Results ... 15

3.3.1 Nmap Scan Data ... 16

3.3.2 SHODAN Scan Data... 17

3.3.3 Log Parsing ... 19

3.4 Discussion .. 21

3.4.1 Scan Data Analysis ... 21

3.4.2 Conpot Overview Scoring... 23

4 CONCLUSION ... 25

5 REFERENCES ... 27

LIST OF FIGURES

Figure 1: Conpot initial start screen .. 12

Figure 2: AWS image creation ... 13

Figure 3: Amazon Web Services Dashboard for Sao Paulo ... 13

Figure 4: SHODAN Default template (Siemens S7-200) Scan Result (Not fully exhaustive, results

for port 22 and 80 not displayed) .. 18

Figure 5: SHODAN Gas Tank template (Guardian AST) Scan Result .. 19

Figure 6: Example snippet of conpot.log for default template ... 20

LIST OF TABLES

Table 1: Honeypot Type Summary (Wade et al., 2011) ... 7

Table 2: AWS Conpot deployment zone information .. 14

Table 3: Conpot templates and corresponding ports... 15

Table 4: Nmap scanning (utilizing flags –v and –A) .. 16

Table 5: Nmap scanning (utilizing –v, -A, and -Pn flags) .. 17

Table 6: Nmap scanning (utilizing –v –A –Pn and -p- flags) ... 17

Table 7: SHODAN Scan data results .. 18

Table 8: Originating countries for Conpot Guardian AST interactions .. 20

Table 9: Originating countries for Conpot Siemens SIAMATIC S7-200 interactions (only 21

ABSTRACT

SCADA honeypots are key tools in determining not only threats which pertain to SCADA devices

in the wild, but also as an early detection mechanism of potential malicious tampering within a

SCADA device network. An analysis of one such SCADA honeypot, Conpot, will be conducted

to determine its viability as an effective SCADA emulating device. A long term analysis is

conducted and a simple scoring mechanism is leveraged to evaluate Conpot.

1 INTRODUCTION

In a world where the value of information is ever increasing, hackers are consistently targeting

governments, corporations, and individuals to obtain valuable secrets, proprietary data, and

personally identifiable information (PII). To better understand the landscape of where these attacks

are originating, honeypots can be used to not only conduct research on threats within the wild, but

also notify if a potential threat is within one’s network. Supervisory Control and Data Acquisition

(SCADA) Systems have since also become a target and with the advent of SCADA honeypots,

early notification of SCADA devices being tampered with or new knowledge of threats pertaining

to said devices can be determined and analyzed.

2 PROBLEM DEFINITION / BACKGROUND

2.1 Literature Review

2.1.1 Background Area 1 (Honeypots)

Within Honeypots, there are three different types: low-interaction, high-interaction, and hybrid.

The low-interaction honeypots serves the purpose to “simulate only basic network services (or

only a base part of the basic network services)” where as a high-interaction honeypot simulates

much more complex services (Buza et al., 2014). Furthermore, Buza et al. expands on the primary

advantage of low-interaction honeypots being much easier to design and maintain and tend to be

much more stable. High-interaction honeypots on the other hand are much harder to implement

because of far more complexities but also are much harder to detect and make great targets for a

potential SCADA system hacker. Hybrid honeypots attempt to bridge the advantages between the

high and low interaction honeypots while minimizing on their downfall. A summary of the primary

differences can be seen in Table 1.

Table 1: Honeypot Type Summary (Wade et al., 2011)

2.1.2 Background Area 2 (SCADA Specific Honeypots)

SCADA Specific Honeypots serve the purpose to effectively simulate a SCADA system. A typical

SCADA system is composed of four parts: “a central computer (host), a number of field-based

remote measurement and control units known as Remote Terminal Units (RTUs), a wide area

telecommunications system to connect them, and an operator interface to allow the operator to

access the system” (Wade et al., 2011). One of the first attempts at emulating a PLC device was

conducted by members of the Cisco Critical Infrastructure Assurance Group (CIAG) in March of

2004. The use of Honeyd to simulate services typically used by a PLC included:

 TCP/IP Stack of the PLC

Low-interaction High-interaction

Solution emulates operating

systems and services

No emulation, real operating

systems and services are provided

Easy to install and deploy. Usually requires simply

installing and configuring software on a computer.

Can capture far more informaiton including new

tools, communications, or attacker keystrokes.

Minimal risk, as the emulated services control

what attackers can and cannot do.

Can be complex to install or deploy (commercial

versions tend to be much simpler).

Captures limited amounts of information main

transactional data and some limited interaction

Increased risk, as attackers are provided real

operating systems to interact with

 Modbus/TCP server implementation

 FTP server

 Telnetd server

 HTTP server

Cisco’s CIAG ended support for the project in 2005 and the scripts utilized with Honeyd were

incomplete. Also, services were “only partially implemented and the realized functionality is not

realistic nor interactive” and various bugs and mistakes were present within the Python code that

was developed.

Conpot is another option for a low-interactive SCADA honeypot and serves the purpose of being

extremely easy to implement. “It supports the simulation of protocols such as HTTP, Modbus, and

SNMP, as well integrating real PLC devices” (Serbanescu et al., 2015). The Conpot project by The

Honeynet Project was released in May 2013. This particular honeypot utilizes a logging system to

monitor changes that are potentially made. The honeypot logs events of HTTP, SNMP and Modbus

services with millisecond accuracy and offers basic tracking information such as source address,

request type, and resource requested in the case of HTTP (Buza et al., 2013).

One of the most advanced SCADA honeypots created is the SCADA Honeynet which is

maintained by Digital Bond. The Honeynet uses two virtual machines, one of which is a

Generation III honeywall extended with IDS signatures from Digital Bond’s Quickdraw (Buza et

al., 2013). The honeywall acts as a mechanism to monitor and log every malicious attack that may

occur against the PLC. The second virtual machine simulates a popular PLC that runs five services

which include FTP, Telnet, HTTP, SNMP, Modbus, and TCP. “The FTP, HTTP and Modbus

services are implemented by different Java applications while the Telnet and SNMP services are

realized by Python scripts” (Buza et al., 2013)

Previous research can be found summarized in Table 2.

Table 2: Summary of Prior SCADA Honeypot Studies

2.1.3 Research Gaps

After conducting the literature review of SCADA honeypots, a gap was identified regarding the

analysis of the effectiveness of various honeypots. Various studies were found that detailed the

interactions that occurred with a given honeypot, i.e. Digital Bond Honeynet and Conpot, however

the actual effectiveness of any given honeypot has not been conducted. The closest approach to

this field of study was Evaluating Low Interaction Honeypots and On their Use against Advanced

Persistent Threats by Fronimos, et. al. Fronimos’s paper however analyzed various general

honeypots, not only SCADA honeypots, and provided an extremely high level analysis of the

Study Focus Testbed Methods Findings

Serbanescu, et al. (2015) Honeynet Amazon EC2, Snort

Honeynet utilizing

Modbus, DNP3, ICCP,

IEC-104, SNMP (v1/2/3),

TFTP, XMPP

Listings on SHODAN led to non-

SHODAN peer interactions, positive

 correlation between discovery on

SHODAN and interactions

Buza, et al. (2014) CryPLH Vmware

HTTP, HTTPS, SNMP, ISO-

TSAP

Effective simulation of Siemens PLC

via Linux

Scott, et al. (2014) Conpot Syslog, Splunk SNMP, MODBUS, HTTP

Utilized Conpot in pre-existing

airgapped SCADA network

Buza, et al. (2013) Custom Linux Based Vmware

HTTP, HTTPS, SNMP, ISO-

TSAP

Effective simulation of HTTP, HTTPS,

ISOTSAP, SNMP from Siemens PLC

while also allowing for logging of

attacker actions in high interaction

environment

Wilhoit, et al. (2013) Custom Snort HTTP

Accurately detected attacker

locations utilizing BeEF, focused on

targeted attacks versus drive-by or

automatic approaches

Wade, et al. (2011) Digital Bond Honeynet Vmware, Snort

Telnet, FTP, SNMP, HTTP,

MODBUS, VxWorks

Debugger

Active probing of honeypot setup,

however limited interactions while

deployed on university network

various facets of the honeypots reviewed whereas this Masters Paper looks more in depth on the

use of Conpot.

3 EXPERIMENT / METHODOLOGY / CONTENT

3.1 Introduction / Approach

In order to conduct a full analysis of the SCADA honeypot Conpot, an image was created and then

used to create multiple instances across Amazon Web Services’ zones. The logs were analyzed on

April 11th after the honeypots had been running since March 25th. For the purposes of consistency

in long term up-time, the honeypots were further analyzed on April 27th. The following section

outlines the steps for setup and process for creating instances of Conpot.

3.2 Conpot Setup

3.2.1 Image Creation

In order to expedite the process of the Conpot setup, Amazon Web Services was utilized for

deployment across the globe. Installation of Conpot is quite simple, however certain dependencies

are necessary for it to fully function. Due to the age of some of the packages necessary, certain

repositories must be manually added. Ubuntu 12.04 was used as the base operating system for a

micro-instance within AWS and after configuring basic settings and conducting updates, the

following commands were used to finish the Conpot install:

 sudo apt-get install git

 sudo vim /etc/apt/sources.list
o Add this line

 “deb http://us.archive.ubuntu.com/ubuntu precise main multiverse”

 sudo apt-get update

 sudo apt-get install git

 sudo apt-get install gcc-4.9 build-essential autoconf libtool pkg-config

 sudo apt-get install python-dev

http://us.archive.ubuntu.com/ubuntu

 sudo apt-get install libmysqlclient-dev

 git clone https://github.com/glastopf/conpot.git

 cd /opt

 sudo git clone https://github.com/glastopf/conpot.git

 cd conpot

 sudo apt-get install gcc

 sudo apt-get install libsmi2ldbl snmp-mibs-downloader python-dev

libevent-dev libxslt1-dev libxml2-dev

 sudo python setup.py build

 sudo python setup.py install

 sudo conpot

After adding the repository “deb http://us.archive.ubuntu.com/ubuntu precise main multiverse”,

the necessary apt-get packages were made available for final install. Finally getting to the point

where Conpot actually worked, however, took some time due to discrepancies between different

installation instructions. Through a process of trial and error, the aforementioned command list

was finalized for a fully working installation of Conpot. Successful installation of Conpot will

yield the following menu after entering the command sudo conpot:

https://github.com/glastopf/conpot.git
https://github.com/glastopf/conpot.git
http://us.archive.ubuntu.com/ubuntu

Figure 1: Conpot initial start screen

The aforementioned output displays the various templates that are available to the current iteration

of Conpot at the time of this writing (version 0.5.1). Currently, five different “templates are

available to the honeypot user which includes:

 Default: Siemens S7-200 ICS

 IPMI: Simple IPMI (intelligent platform management interface) device

 Proxy: proxy functionality demo

 Guardian AST: Guardian AST gas tank sensor

 Kamstrup 382: Emulation of a Kamstrup 382 Smart meter

During the analysis portion, the default template (Siemens S7-200 ICS) and Guardian AST

template (guardian_ast) will have an in-depth review while the IPMI and Kamstrup devices will

have a more surface level overview.

3.2.2 Amazon Web Services Deployment

After successfully obtaining the Conpot start screen, the AWS micro-instance was shut down so

that an image could be created:

Figure 2: AWS image creation

Utilizing the “Create Image” function within AWS, the image was then added to the Images –

AMI folder for deployment. This image is then also able to propagate to various deployment zones

within the AWS infrastructure. After deploying the image twice in various zones (see Figure 5 for

an example), the SCADA honeypots were then accessed via SSH to finalize their deployment once

the instances were in a “running” state.

Figure 3: Amazon Web Services Dashboard for Sao Paulo

Another advantage to leveraging Amazon Web Services is its key management and port security

options. Each instance of the Conpot which was to be deployed was setup to allow all ports to be

accessible for the most accurate review of port information when running any given template

within the honeypot. Furthermore, the key pair options made obtaining access to each instance

extremely easy. After obtaining the private key necessary to create a connection, each instance

was generated using the same public key information so that merely using the private certificate

combined with the password during creation allowed easy access to the various deployments of

Conpot that were used.

After accessing each honeypot, the following command was utilized to start the Conpot with the

designated template:

 sudo conpot --template [template name]

If a template name is not selected, the default option of “default” is used. For the purposes of the

honeypot analysis, an in-depth review of both the Guardian AST and default Siemens S7-200 ICS,

however a brief analysis of the IPMI - 371 and Kamstrup – 382 smart meter will also be conducted.

The following table summarizes the deployed honeypots by their location, IP and details of which

template was utilized.

Location

Name IP Details Zone

us-east-1a Conpot1 52.23.225.126 Default template US East (N. Virginia)

us-east-1a Conpot2 54.86.249.160 Emulation of gas tank level US East (N. Virginia)

us-west-2b Conpot3 52.36.62.44 Default template US West (Oregon)

us-west-2b Conpot4 52.32.45.32 Emulation of gas tank level US West (Oregon)

eu-west-1b Conpot5 52.30.167.154 Default template EU (Ireland)

eu-west-1b Conpot6 52.19.95.69 Emulation of gas tank level EU (Ireland)

ap-northeast-1c Conpot7 52.192.20.179 Default template Asia Pacific (Tokyo)

ap-northeast-1c Conpot8 52.196.47.205 Emulation of gas tank level Asia Pacific (Tokyo)

ap-southeast-1b Conpot9 54.254.141.38 Default template Asia Pacific (Singapore)

ap-southeast-1b Conpot10 54.254.140.52 Emulation of gas tank level Asia Pacific (Singapore)

sa-east-1a Conpot11 54.207.96.59 Default template South America (Sao Paulo)

sa-east-1a Conpot12 54.232.248.38 Emulation of gas tank level South America (Sao Paulo)

Table 2: AWS Conpot deployment zone information

An issue was noticed regarding the execution of the Python scripts to run Conpot. After

disconnecting the terminal session, Putty was used in this case, the Python code would stop being

executed. The program “screen” was therefore used to prevent sessions from terminating. Using

screen is simple enough, after using the command screen and going through the necessary text,

typing in the newly provided terminal and using the follow commands fixed the issue:

 Ctrl + a, Command tells screen to be used in the active window

 Ctrl + d, Command tells screen to disconnect from the active window, while still keeping

the session alive in the background

 Screen –r, Command connects to a session that is residing in the background, however if

multiple sessions are currently in the background, a number must be used to specify which

session to rejoin

3.2.3 Work completed (Process)

3.3 Data or Results

This section goes over the data collected. During the following section, the discussion, the results

will be analyzed in better detail. The following table lists the SCADA honeypots and the ports that

should be found open within each one respectively.

Honeypot Type Open Ports

Siemens S700 80, 102, 161, 502, 623, 47808

Guardian AST 10001

IPMI 623

Kampstrup Smart
Meter 1025, 50100

Table 3: Conpot templates and corresponding ports

3.3.1 Nmap Scan Data

Nmap was utilized to check the ports which were open after running the Python scripts to start

Conpot. To allow a better comparison, a “vanilla” installation of Ubuntu was deployed and

scanned to show what ports by default were showing up. The follow nmap scanning commands

were used:

 nmap -A -v [IP Address]

 nmap -A -v -Pn [IP Address]

 nmap -A -v -Pn -p- [IP Address]

nmap was used in a staged approach to show what different scanning techniques showed as the

open port results. The flag -A results in nmap turning on, “version detection and other Advanced

and Aggressive features” (nmap.org). Although this scanning technique is more intrusive and less

stealthy due to its aggressive scanning and OS detection, it provides a good representation of what

to expect for identification. Using the -Pn resulted in nmap not utilizing pings when conducting its

scans to determine if the host was up. For the purposes of the analysis, the virtual machines were

already known to be operational and in some cases, their configurations rejected pings. The -p-

flag was also used to conduct a scan over the entire port range (ports 1-65535). Lastly, the flag -v

was used to, although it was deemed not necessary due to the –A flag already including version

detection.

Honeypot Type Result

Siemens S700 22, 80

Guardian AST N/A

IPMI N/A

Kampstrup Smart
Meter N/A

Table 4: Nmap scanning (utilizing flags –v and –A)

Scanning with the -v and -A flags resulted in no results from the Guardian AST, IPMI, and

Kampstrup smart meter due to pings being rejected.

Honeypot Type Result

Siemens S700 22, 25, 80, 514, 6009, 8443

Guardian AST 22, 25, 514, 6004, 10001

IPMI 22

Kampstrup Smart
Meter 22, 25, 514, 1025, 1068

Table 5: Nmap scanning (utilizing –v, -A, and -Pn flags)

After utilizing the -Pn flag to stop the ping option during scans, many more ports were identified

across the various usable templates within Conpot.

Honeypot Type Result

Siemens S700
22, 80, 102, 502, 514, 2000, 5060, 8008, 8020,
18556

Guardian AST
22, 514, 2000, 3826, 5060, 8008, 8020, 10001,
11190, 19116, 36123, 43787, 48191, 63790

IPMI 22, 2000, 5060, 8008, 8020

Kampstrup Smart
Meter

22, 514, 1025, 2000, 4368, 5060, 8008, 32469,
50100, 52245, 57565

Vanilla Ubuntu Install
22, 514, 2000, 5060, 8008, 8020, 38051, 38093,
47785

Table 6: Nmap scanning (utilizing –v –A –Pn and -p- flags)

As a final scan to compare against, all ports were scanned to determine what a full nmap scan

would show as open port results. On average the scans took around three to four hours to fully

process due to the intensity of the scans.

3.3.2 SHODAN Scan Data

SHODAN was also used to determine which ports it saw as open within the various Conpot

templates. Unfortunately, the IPMI and Kampstrup templates were never identified by SHODAN

due to time constraints.

Honeypot Type SHODAN Port Scan Result

Siemens S700 22, 80, 102, 161

Guardian AST 10001

IPMI N/A

Kampstrup Smart
Meter N/A

Table 7: SHODAN Scan data results

Figure 4: SHODAN Default template (Siemens S7-200) Scan Result (Not fully exhaustive, results for port 22 and 80 not

displayed)

The previous screen shot shows two ports which SHODAN identified as open. Ports 22 and 80 are

not shown due to being typical responses whereas the information from ports 102 and 161 of the

Siemens S7-200 demonstrate effective emulation of the device. The banners associated with each

respective port also demonstrate the template’s alignment to the actual Siemens SIMATIC S7-200

device.

Figure 5: SHODAN Gas Tank template (Guardian AST) Scan Result

Figure 7 shows the full results of SHODAN’s scan regarding the Conpot Guardian AST device.

Only port 10001 was identified and the banner pulled shows actual data readouts from various gas

products within the tank inventory.

3.3.3 Log Parsing

Conpot does not come pre-packaged with any built-in analysis mechanism, only a mere basic

logging system. The following demonstrates what the log looks like:

Figure 6: Example snippet of conpot.log for default template

To conduct a basic analysis of the aforementioned log, the following commands were used to parse

IP information:

 grep -o '[0-9]\{1,3\}\.[0-9]\{1,3\}\.[0-9]\{1,3\}\.[0-9]\{1,3\}' conpot.log > output.txt

 sort -u output.txt >> outputCleansed.txt

The first command uses the Linux grep program to parse the log and display any given IP address

found within the Conpot log. The results were placed in a semi-processed file called output.txt

which was then further processed by the second command which sorted IP addresses from smallest

to greatest, numerically, and kept only unique IP addresses based on the -u flag. Further processing

was also conducted to remove the Conpot’s own IP address from the result set. These commands

were used to obtain IP results to yield the following tables:

SCADA Interactions - GuardianAST (Gas Tank)

Country Interaction Count

Netherlands 4

United States 5

Table 8: Originating countries for Conpot Guardian AST interactions

SCADA Interactions - Siemens Siamatic PLC

Country
Interaction

Count

United States 446

China 130

Netherlands 59

France 36

Poland 26

Russian Federation 20

Germany 18

Taiwan; Republic of China
(ROC) 11

Switzerland 10

United Kingdom 9

Brazil 7

Moldova Republic of 7

Ukraine 7

Korea Republic of 5

Lithuania 5

Iceland 4

Indonesia 4

Italy 4

Sweden 4

Table 9: Originating countries for Conpot Siemens SIAMATIC S7-200 interactions (only

Both Table 8 and Table 9 show basic connection information for each corresponding Conpot

template that was reviewed in-depth, Guardian AST and Siemens SIAMATIC S7-200

respectively.

3.4 Discussion

3.4.1 Scan Data Analysis

A very interesting finding in the nmap scan data is that while the Guardian AST, Kampstrup, and

IPMI devices all denied pings, the Siemens SIAMATIC S7-200 did not (Table 4). When removing

the ping option for the result set in Table 5, the results were more comprehensive and revealing.

In every scan result, port 22 was shown as open, which of course would be the case due to utilizing

SSH to gain access to each honeypot via a terminal in Putty. When comparing what should have

been seen as open ports from Table 3 for each respective template within Conpot to the results

from Table 5, nmap failed to determine that the following ports were open on their respective

devices:

 Siemens S7-200: 102, 161, 502, 623, 47808

 IPMI: 623

 Kampstrup Smart Meter: 50100

However, these ports may not have been found due to not being part of the top 1000 which nmap

commonly scans without being directed to scan each and every port. To that point, nmap was

eventually set to scan each and every port which results are shown in Table 6. After scanning all

ports, not all ports which should have been open according to Table 3 were found. The results are

as follows for ports which were not found:

 Siemens S7-200: 161, 623, 47808

 IPMI: 623

These findings are very perplexing due to, in the case of the Siemens device, SHODAN being able

to find that port 161 was open and yielding a banner as shown in Figure 4. As previously discussed,

all ports were left open in the AWS firewall settings, so these ports should have been found during

the complete comprehensive scan of all ports. What was more surprising during the full

comprehensive scan was the number of ports that were not expected to be open at all within Table

6. Due to the large variety of ports that were discovered to be open, the “vanilla” install of the

Ubuntu image was deployed without running any Conpot template. Based on these initial results,

it appears that more ports are being opened than was originally anticipated when running any given

Conpot template. Further analysis will need to be conducted to determine if there are indeed extra

ports being opened that might be indicative of a honeypot instead of an effective emulation.

The results from the SHODAN scan were also very insightful in that they more accurately showed

the Conpot instances as being SCADA devices. This is primarily because SHODAN focuses its

scan results on a much smaller port set, which resulted in the results not showing the large amount

of open ports that were shown in the all port scan of nmap. The most intriguing finding here, as

previously mentioned, is that SHODAN found port 161 open on the Siemens device while nmap

did not. The banner grabbed by SHODAN also showed that the device was a Siemens SIAMATIC

S7-200 device. These findings may show that nmap is indeed not fully effective in determining

ports that are actually open. Unfortunately, at the time of this writing, SHODAN had not

discovered the IPMI and Kampstrup devices, so comparing SHODAN results of these devices with

the nmap port scans was not available.

3.4.2 Conpot Overview Scoring

Conpot will be scored in six areas: setup, ease of use, documentation, logging, uptime, analysis.

Within each of these areas, a qualitative measure will be used (Below Average, Average, and

Above Average) to represent Conpot’s effectiveness as a SCADA Honeypot.

Setup – Above Average

Overall setup for Conpot is extremely easy. Although there was not a single designated instruction

set that was found to work 100%, an effective install was derived from using multiple guides on

the internet which eventually resulted in a working Conpot deployment.

Ease of Use – Above Average

Activating Conpot is easy enough. After Conpot receives a short command with sudo privileges,

it is able to execute the necessary Python scripts to begin emulating whichever device is chosen

from its template list. One issue identified with Conpot is that after accessing the Honeypot and

activating the Python scripts to run, the job ends up ending when disconnecting from the terminal.

To remedy this issue, the program screen was used to force the session to persist after a terminal

session with Putty was ended. Utilizing screens ability to keep commands persistent was quite

simple and considering it is available in a lot of Linux installations, it is readily available.

Documentation – Average

Various pieces of documentation were found, however the final direction set utilizes was

composed of multiple guides to have a product that worked. Dependency issues often occurred

and some packages that were attempted to be installed were not able to be found due to not existing

in the default repositories within Linux. This problem would have been easy to overcome if guides

specified alternative repositories to use, but often times they did not as packages and software

versions were deprecated. Conpot also has the ability for individuals to use their own templates if

they so choose, however instructions for actually creating these templates are miniscule at best.

Logging – Average

Conpot’s logging feature is quite in-depth in that it records literally every interaction it has.

However this also creates a ton of noise with little to no ability to change what is logged or not for

an individual’s interest. Having no internal analysis software means that the logs must have parsers

built to merely identify any given type of behavior. Conpot does have an aggregate collector which

goes the creators of Conpot, called HPFeeds, however at the time of this writing the website was

not available. After a flag within Conpot is set to on, information the Conpot collects is sent to this

aggregator for analysis, and details are actually made available to participants of HPFeeds.

Uptime – Above Average

Not all templates of Conpot were tested for longevity, however the templates which were,

Guardian AST and Siemens SIAMATIC S7-200, proved to be quite resilient. In total the SCADA

honeypots ran from March 25th until the default Siemens unit stopped serving webpages across

port 80 on April 22nd. The cause for this was not determined as nothing was found noticeable

within the logs, however simply stopping the Python script and restarting it resulted in the issue

being corrected. At the time of this writing the Guardian AST was still consistently running when

it was checked on April 29th. Overall, the uptime of the Conpot is actually quite incredible.

Analysis – Below Average

As previously mentioned, no internal analysis system is in place to analyze the data that Conpot

collects. As such, analyzing the logs requires another program or scripts to be used for parsing.

Conpot receives a below average score for this based on the fact that their logs are also difficult to

work with. Had the logs been in a format such as .csv, it would be much easier to manipulate,

however at this point in time, using a program such as Excel to read through the log means column

breaks must be used.

4 CONCLUSION

In conclusion, Conpot is an extremely effective SCADA honeypot that is very versatile based on

the various devices it is capable of emulating. However, Conpot also has a long way to come in

regards to being more beneficial in the analysis realm. It may actually be one of the easiest

honeypots to not only install but also deploy, but the lack of analysis really hinders its ability to

fully analyze the results. Future work that could be done would be to utilize a SIEM such as Splunk

to conduct an analysis on the log data to see if better results could be leveraged from the conpot.log

file. Lastly, to better analyze the Conpot templates for their authenticity of accurately emulating

SCADA devices, further work could be to compare the actual devices versus their emulated

version to see how they compare, especially at the packet level.

5 REFERENCES

Buza, D. I., Juhasz, F., & Miru, G. (2013). Design and implementation of critical infrastructure

protection system. Budapest University of Technology and Economics, 1-58. Retrieved

March, 2016, from http://tdk.bme.hu/VIK/DownloadPaper/Kritikus-infrastruktura-

vedelmi-rendszer

Buza, D. I., Juhasz, F., Miru, G., Felegyhazi, M., & Holczer, T. (2014). CryPLH: Protecting Smart

Energy Systems from Targeted Attacks with a PLC Honeypot. Springer International

Publishing Switzerland, 1-12. Retrieved March, 2016, from

https://www.crysys.hu/~mfelegyhazi/publications/Buza2014cryplh.pdf.

Chinn, R. (2015). Botnet Detection: Honeypots and the Internet of Things (Unpublished doctoral

dissertation). University of Arizona.

Fronimos, D., Magkos, E., & Chrissikopoulos, V. (2014). Evaluating Low Interaction Honeypots

and On their Use against Advanced Persistent Threats. Proceedings of the 18th Panhellenic

Conference on Informatics - PCI '14, 1-6. Retrieved March, 2016, from

http://dl.acm.org/citation.cfm?doid=2645791.2645850

Scott, C. (2014). Designing and Implementing a Honeypot for a SCADA Network. SANS Institute

InfoSec Reading Room, 1-39. Retrieved March, 2016, from https://www.sans.org/reading-

room/whitepapers/detection/designing-implementing-honeypot-scada-network-35252.

http://tdk.bme.hu/VIK/DownloadPaper/Kritikus-infrastruktura-vedelmi-rendszer
http://tdk.bme.hu/VIK/DownloadPaper/Kritikus-infrastruktura-vedelmi-rendszer

Serbanescu, A. V., Obermeier, S., & Yu, D. (2015). ICS Threat Analysis Using a Large-Scale

Honeynet. BCS Learning & Development Ltd., 1-11. Retrieved March, 2016.

Wade, S. M. (2011). SCADA Honeynets: The attractivenss of honeypots as critical infrastructure

security tools for the detection and analysis of advanced threats (Doctoral dissertation,

Iowa State University) (pp. 1-67). Iowa State University.

Wilhoit, K. (2013). The SCADA That Didn't Cry Wolf. Blackhat 2013, 1-24. Retrieved March,

2016, from https://media.blackhat.com/us-13/US-13-Wilhoit-The-SCADA-That-Didnt-

Cry-Wolf-Whos-Really-Attacking-Your-ICS-Devices-Slides.pdf

