terraform_ 4] {5 F Terraform{X{ F #A 45 IPB 35 Cloud SQL
DB

weixin 26722031 o ? 2020-07-30 15:31229 Ziﬁ‘ﬁ o 195 ﬁ uma
R
A

terraform

This is a writeup of how | configured a Cloud SQL database to have only a private IP address. The db is
unreachable from the public internet except for a tiny hole in the private network that allows me to connect from
my laptop. All traffic to the db is encrypted and routed over Google’s internal network. This is a big win for data
security, but it was a pain to set up. I'm writing this in the hope you can avoid some of my mistakes.

XREHKCloud SOLEHE R E NN EABRA IPHMLIISCE. BT EHAMEF R —A/ P KongfE AT LM E 4
BT EEZ I, ZBIEETTIEMN A KinternetBiE . BIHEERFAFRER LI NE, HilEidGooglet) I #
MLHATERE. X TFHEREMS, X&R—NEXMER, EHREIERNBHE. REXBLERFEEEE
GRBR I — AR,

If you’re in a hurry and already know Terraform and GCP well, you can skip the explanation and jump straight
to the Terraform files on GitHub.

WREIRE I H LB AR TerraformMGCP, Mwr LABkE 88, B E Bk 2GitHub L Terraform>C 44 .
&% (Overview)

e Prerequisites

Stk %M

e Configuring a VPC with a private IP address range

18 F % F 1P ik 76 AC & VPC

e Configuring a Cloud SQL db to have a private IP address only
¥ Cloud SQL##E e B A B A A H IPHibE

¢ Using Cloud SQL Proxy to open a tiny hole in your private network so you can actually access the db

f§ F Cloud SQLAEEE & FH M T —/N/Kong, BAERE SRR AT L i) £ 22

e Connecting to the database through SSH
18 I SSHIE 2 2 ¥ BE

e Conclusion
g

S k%44 (Prerequisites)

Skip this section if you already have terraform connected to your GCP project and all the required Google
APIs enabled.

MR ECE K cerraformZEFIGCPIIH I B T A ¥ FEHGoogle API, & ki th&k 4.
You'll need the following:

BRTEUTHE:

https://blog.csdn.net/weixin_26722031
https://medium.com/swlh/how-to-deploy-a-cloud-sql-db-with-a-private-ip-only-using-terraform-e184b08eca64
https://cloud.google.com/sql
https://cloud.google.com/sql
https://github.com/ryboe/private-ip-cloud-sql-db
https://github.com/ryboe/private-ip-cloud-sql-db

A GCP project
—AGCPIH
gcloud installed, up-to-date, logged in, and connected to your project

gcloud ok, &, CDERFCERIERNE

| ran these commands on macOS:

RAEMacOS LBIT T A T4

> brew cask install google-cloud-sdk

> gcloud components update

> gcloud auth login

> gcloud config set project <my-project>
> gcloud config list

3. All required Google Cloud APIs enabled
3.2 /8 AT E L R Google Cloud API

One of the annoying things about Google Cloud is that you can’t use their services right away. If you have a
fresh project, you have to enable a bunch of APIs first. For example, you need to enable the Google Compute
API before you can spin up a VM. A Google eng told me this extra step was “mostly for you to recognize that
there’s a cost.” | guess that makes sense, but it does add some hassle when you're trying to automate infra
provisioning.

XFGoogle CloudJ A\) E1E 2 — B 2 BB BME AT RS . WREFE—ANHWE, WLHE%EH
KEAPl, B, #5258 HGoogle Compute AP, #RJEABEEZIVM. —fIGoogle LRI, X—#
SRR EFERIEEINGRBIZEMNHARMNE. REXRAFEHY, H2L5%82E 83 ERRE BN, 750
Y —ERRA .

We need to enable six APIs for this project. We could use Terraform to enable them, but | strongly advise
against this. Terraform has no knowledge of the dependencies between resources and APIs. terraform
apply will often fail because it tried to create a resource before the right APl was enabled, or because it tried
to enable APIs in the wrong order. Unless you want to map all these relationships yourself by adding
depends_on to most of your resources, just use gcloud.

BATFEAWIAE B HAMAPL 347 77 2% F Terraform)a FI'EA1 , (HRBRIRFVE USRS Z XM .
Terraformp T i@ BIFEMAPIZ B IR R. terraform applyiBHESRM, FEANEZERIERHERKAPIZ
BRI, BE BEAZ R AR B AP BRIEEAEREE MR 2 HBEIEHMdepends onkH S
FrAxEXR, HUEFEH geloud .

> gcloud services enable \
cloudresourcemanager.googleapis.com \
compute.googleapis.com \
iam.googleapis.com \
oslogin.googleapis.com \
servicenetworking.googleapis.com \
sqladmin.googleapis.com

https://cloud.google.com/resource-manager/docs/creating-managing-projects#creating_a_project
https://cloud.google.com/resource-manager/docs/creating-managing-projects#creating_a_project
https://cloud.google.com/sdk/install
https://cloud.google.com/sdk/install
https://cloud.google.com/sdk/gcloud/reference/components/update
https://cloud.google.com/sdk/gcloud/reference/auth/login
https://cloud.google.com/sdk/install
https://cloud.google.com/sdk/install
https://cloud.google.com/sdk/gcloud/reference/components/update
https://cloud.google.com/sdk/gcloud/reference/auth/login
https://www.terraform.io/docs/providers/google/r/google_project_service.html
https://www.terraform.io/docs/providers/google/r/google_project_service.html
https://www.terraform.io/docs/providers/google/r/google_project_service.html

Yes, it sucks that your infra code won'’t be 100% Terraform, but a one-line bash script isn’t the worst. This is a
one-time task. Once the APIs are enabled, leave them enabled.

R, IRREEE, EERERAEA2R100% Terraformit), (HRHITbashiiAHARBEER . X —T—KIEH
f£55. BRAAPUE, HHARRFREHRSE.

4. A Terraform Cloud workspace
4. Terraform Cloud T 1E %% 4]

For this project, 'm using Terraform Cloud. This is a service from Hashicorp with a few important features over
vanilla Terraform. The most important feature is remote execution. Terraform works by reading code from your
.t f files and converting it into calls to your cloud provider's APl. When you run terraform apply On your
laptop with a flaky Wi-Fi connection, you're trusting that all network requests will succeed. If they don’t, your
cluster could be left in a half-deployed state. You can try tearing down the cluster, or you can try finishing the
deploy. Both options have a high probability of failing and costing you time. With remote execution, the app1y
is being run on a highly available cloud server managed by Hashicorp.

SFXATE, RIEAMEATerraform Cloud « X f&HashicorpiR Bt —H RS, BB T HFE Terraformit) —Ls
HERE. REENNRBREEN . Terraformiiid M . ¢ £ 304 EREURAD I H B85 = 3R 4L R AP
WHRIE. HfEEdterraform apply Wi-FiEBAEE L ABRN LiZfTterraform applyht, B&HHE
B MGG RE BRI, WRAXFEM, BRIEHRTRSATERRERS. B2 rREE, w2k
SERERE . PR BRI A W B S BURNMORIR BB R], BT ERAT, apply R TE HHashicorp®)
m A A RS LT .

Another key feature of Terraform Cloud is secure, remote storage of state files. Terraform state files are
created or mutated whenever we run an apply or destroy. They contain secrets and need to be stored
safely. I'd rather not have the state file on my local machine, where 'm responsible for keeping it safe.

Terraform Cloudf] 5 — N REBINRE R RS U %24, TEAHE . B3BANTEBTapplyBdestroyhf, #<&
Bl E TerraformiR & X, BENMEEHE, FEZEGFM. RTEANERMYLE ERRESCH, mE
51 B RS

Terraform Cloud is free for up to five users. | strongly recommend it.
Terraform Cloud " 2k AANH P Rt fEH . RIBIUHERF .

7. AGCP service account for Terraform Cloud

7. Terraform Cloudf) GCP iz %5 ik F

Once you've created a terraform-cloud service account in GCP, take the entire JSON key, minify it, and
save it as the GOOGLE CREDENTIALS env var in your workspace. It's a secret, so make sure to check the
“Sensitive” box when you set it. You must minify the JSON. Terraform Cloud will not allow you to set an env
var with newlines in it.

HEGCPHEIE T terraform-cloud R G, EMHHEANISONEH, BHEML, REKHAFANITE
X HGOOGLE CREDENTIALS o XR&NHAE, HILERBRESLEPBURIE. KLH45/NISON.
Terraform Cloud S R I W B A AT R IEL 2.

Image for post
Now that Terraform Cloud is connected to your GCP project, we can finally start this journey. To keep things
short, 'm going to omit module organization, variables, and outputs. I'll just focus on the resources. If you want
the rest, you can see the complete code on GitHub.

https://www.terraform.io/
https://www.hashicorp.com/
https://www.terraform.io/
https://www.hashicorp.com/
https://www.terraform.io/docs/state/sensitive-data.html
https://www.terraform.io/docs/state/sensitive-data.html
https://www.hashicorp.com/products/terraform/pricing/
https://www.hashicorp.com/products/terraform/pricing/
https://cloud.google.com/iam/docs/service-accounts
https://cloud.google.com/iam/docs/service-accounts
https://github.com/ryboe/private-ip-cloud-sql-db

B7ETerraform Cloud 2 &2 EHIGCPIH, RAIZ T HB X —KE. ATHEEL, REEEERKHA
H, TEMEHH., RERXKERR. RERFEERKRAE, TLAEGItHUb EEF TR .

i F & F 1P ik ¥ B i & VPC (Configuring a VPC with a private IP address
range)

First, we need to create a VPC.

B, BRIMNFEQE—VPC,

resource "google_compute_network" "vpc" {

name = var.name
routing_mode = "GLOBAL"
auto_create_subnetworks = true

}

Then, we need to allocate a block of private IP addresses.

RE, BINTESE—NRE IPHbEER .

resource "google compute_global address" "private_ip_block" {

name = "private-ip-block"

purpose = "VPC_PEERING"

address_type = "INTERNAL"

ip_version = "IPv4"

prefix_length = 20

network = google_ compute_network.vpc.self_link

We don't specify the exact address range. Google will select the range for us. We only need to specify how
many addresses we want. A prefix length of 20 will create around four thousand IP addresses. That’s plenty.

BATRAREH M E . Googlef AEATIEFEEE . BAIAFTEREBRNBEES DAk, AIRKE
204 B £14000 IPHbE. T

Then we need to enable something called private services access. This is what allows our instances to
communicate exclusively using Google’s internal network.

RE, BAIFBERBRARALA RS VIHKIIEE « XetREATHSLE] AT AEH Googlel P #8 M 44 & 134T EAE 1

resource "google_service_networking_connection" "private_vpc_connection" {
network = google_compute_network.vpc.self_link
service = "servicenetworking.googleapis.com"
reserved_peering ranges = [google_compute_global_address.private_ip_block.name]

}

Finally, we need to add a firewall rule to allow ingress SSH ftraffic.

e, BATE BB KA B fe v A O SSHifLE -

https://github.com/ryboe/private-ip-cloud-sql-db
https://github.com/ryboe/private-ip-cloud-sql-db
https://cloud.google.com/sql/docs/postgres/configure-private-services-access
https://cloud.google.com/sql/docs/postgres/configure-private-services-access

resource "google_compute_firewall" "allow_ssh" {

name = "allow-ssh"
network = google_compute_network.vpc.name
direction = "INGRESS"
allow {
protocol = "tcp"
ports = ["22"]
}
target_tags = ["ssh-enabled"]

}

The target tags field is important. This firewall rule will only apply to instances that have been tagged with
"ssh-enabled". We'll use this tag later when we set up a special instance that proxies traffic to the db
(Cloud SQL Proxy).

target tagsFBRIBEE. WP KEMNUIUEHFEFRiE N ssh-enabled" L. 5, ARIMNEE—N
R S AR HE 2 B4 B B I & (Cloud SQLARER)RS, Kk tbAwic

% Cloud SQLE#E FE i B MU EE F.F IPH i (Configuring a Cloud SQL db to
have a private IP address only)

Now that we have an isolated network, let’s put our db in it. In Terraform, creating one db requires two
resources for some reason.

BAEBRNMNE TREHMNG, iIERITEBIFEEBRNR S . ETerraform, BHTFEMER, S —NEHEEFEEHR
AR

non

resource "google_sql_database
name = "main"

main" {

instance = google_sql_database_instance.main_primary.name
}resource "google_sql_database_instance

non

main_primary" {

name = "main-primary"
database_version = "POSTGRES_11"
depends_on = [google_service_networking_connection.private_vpc_connection] settings {
tier = "db-fl-micro"
availability_ type = "REGIONAL"
disk_size = 10 # 10 GB is the smallest disk size ip_configuration {
ipv4_enabled = false
private_network = google_compute_network.vpc.self link
}
}
}resource "google_sql_user" "db_user" {
name = var.user

instance = google_sql_database_instance.main_primary.name
password = var.password

}

There are a few important bits here:
XEF-SHEERRT

1. I'mcreating a Postgres instance here, but it's easy to convert my Terraform code to MySQL or MS SQL Server.

RIEIX B G —/Postgresszf, (HRMRZ 5% TerraformfRi%E # AMySQLEMS SQL Server.

We have to explicitly state that the db depends on private services access with a depends on
statement. Terraform will not figure this out on its own.

AL AEH depends_onif AW B EE AR T 70 A IR 55V H) o Terraform A& B AT g RIXAN
Ao

We must set ipv4 enabled = false to prevent the db from getting a public IP. This doesn'’t stop the
db from getting a private IPv4 address.

BATLA B Eipvd enabled = falseRFjIEBIEERBMAILIP. XA IEEIEERBAE IPvat
k.

4. The db password is a secret. It should be set on the Variables tab of Terraform Cloud.

dbZ SR — AN . BLiZFE Terraform Cloud) A8 & ¥ W+ LT &

Image for post
If yourun terraform apply right now, you'll see it create a VPC and a db with only a private IP. Woohoo!
We’re done, right?

WMRIVHZE/Tterraform apply » BHBRBAUE T NAEERFIPHVPCHEIEE. hoo! SR TIE?

Not quite. We've created a very secure db, but it's so secure that we ourselves can’t access it! [1 To make
this db actually reachable (with psgl or mysqgl or whatever), we need to use something called Cloud SQL
Proxy.

AREH. BACLET M ERZENEEE, BERERMKZEDETRINABCEETRE! AT
A5 2% HE PR S B BT R (B ps gl Bimy sq 1 BREABTT), BATFHE EAEHFRNCloud SQL Proxy #1247 .

i F Cloud SQLACE 748) & F M 45 3T — A~ /NKong, DA #5 Sz Br b 0T PA 5
i) #3 EE (Using Cloud SQL Proxy to open a tiny hole in your private
network so you can actually access the db)

What'’s the point of locking down the db on a private network if we’re just going to open a hole in that network
and let the world in? Well, we've still made a big security improvement by keeping the db instance off the
public internet. Now we’re going to run a special VM instance on the private network that also has a public IP
address. This will serve as a middleman between the public internet and our private network. It will be
hardened as much as possible so only authorized SSH users can get through. Think of it as an exceptionally
fortified gate. If you've heard of a bastion box or a jump box, that's what this is. This instance will have a much
smaller attack surface compared to the db instance. It will run sshd and a binary called cloud sgl proxy
and that’s it.

MRBNMARBATHME LT — MR FEN, a8 EAMNE ERNBHEEEHARE? &
NE, FRAIRE S s Bodhe B S) (R B AE A St Internetz Ab, FEZ AW T H#AT TR KKISUH. IE, BITHAEE
HARNIEIPHIER & MY EE7 —MERRIIVMEEE] . 3308 78 24 A 3L BB R IRATTIK & F P 25 2 18])R]
ERRATRREEIME, DMERERNSSHA P A4 aelid. 7L EAAN—ANRE BRERRTT. W R & il
BL2MEBAE, M. SdoLFIEtl, HEFRRIETEPMIZL. BEWIETsshdfl—14
?'ilcloud_sql_proxyﬁ‘]:l‘zifﬁcloud_sql_proxy , [T E.

First, we need a service account for cloud sql proxy, S0 it can connect to the db.

B, BIIFE—cloud sql proxy &K, DMEE R CAESSIHHEE .

https://cloud.google.com/sql/docs/postgres/configure-private-services-access
https://cloud.google.com/sql/docs/postgres/configure-private-services-access
https://cloud.google.com/sql/docs/mysql/sql-proxy
https://cloud.google.com/sql/docs/mysql/sql-proxy
https://cloud.google.com/iam/docs/service-accounts
https://cloud.google.com/iam/docs/service-accounts

resource "google_service_account” "proxy_account" {

account_id = "cloud-sql-proxy"
}resource "google project_iam_member" "role" {
role = "roles/cloudsqgl.editor"
member = "serviceAccount:${google service_account.proxy_account.email}"

}resource "google service_account_key" "key" {
service_account_id = google_service_account.proxy_account.name

We gave the service account the Cloud SQL Editor IAM role, so it has full read-write access to the db.
BATHMRSS K T T Cloud SQLZw4E 2 IAMA 2, FHith'e BA X508 E N 58 2355 Ui R .
Next, we’'ll create the proxy instance.

BEIR, BATEAIZMRELH.

data "google_compute_subnetwork" "regional_subnet" {

name = google_compute_network.vpc.name
region = "us-centrall"

}resource "google compute_instance" "db_proxy" {
name = "db-proxy"
machine_type = "fl-micro"
zone = "us-centrall-a"
desired_status = "RUNNING"

allow_stopping_for_update = true tags = ["ssh-enabled"] boot_disk {
initialize_params {

image = "cos-cloud/cos-stable"
size = 10
type = "pd-ssd"

}
} metadata = {

enable-oslogin = "TRUE"
} metadata_startup_script = templatefile("${path.module}/run_cloud_sql_proxy.tpl", {
"db_instance_name" = "db-proxy",
"service_account_key" = base64decode(google_service_account_key.key.private_key),
}) network_interface {
network = var.vpc_name
subnetwork = data.google compute_subnetwork.regional subnet.self link access_config {}
} scheduling {
on_host_maintenance = "MIGRATE"
} service_account {
email = module.serviceaccount.email
scopes = ["cloud-platform"]

There’s a lot to unpack here. Let’s take it one block at a time.

XEARZEMERRE. ERMN—KBR—ITH.

data "google_ compute_subnetwork" "regional_subnet" {
name = google_compute_network.vpc.name
region = "us-centrall"

The VPC is a global network that covers all Google Cloud datacenters. Each region is given its own subnet.
We could create the proxy instance anywhere, but for simplicity, we’'ll create it in the same region as the
database. This data source says “give me the subnet for the us-centralil region.”

VPCR % # BT Google Cloud# ¥ LM &RkM %% . B XEEH EH ORI TM. AT R 82
Skfil, EOARIREN, BITSESHEEMRANXEFARE. ZHIERY: “GRus-central IXKEKT

boot_disk {
initialize_params {
image = "cos-cloud/cos-stable"
}
}

cos-stable is the latest stable version of Container-Optimized OS. This is a special Linux distro made by
Google that has some properties that make it ideal for a bastion box.

cos-stablefContainer-Optimized OSH B Fifa R A . XRZGooglefl/E IR BELINUXEATIR, FHIELLEMAE
HEEEEsREEL2E.

1. I's based on Chromium OS, a fast-booting, stripped-down version of Linux.

BT Chromium OS, Chromium OS2 3% J& 2 1K & Bk Linux.

2. It auto-updates itself []

ExHZNEH
3. It can only run programs in containers.
ERBERBRTEBITER.
So, it has a very small attack surface, and requires zero effort to keep it up-to-date with the latest security fixes.

Eik, ERAMRMSEE, BT BRI 5 DE R Z 2B RE TR E R R

tags = ["ssh-enabled"]

This tag instructs the firewall to allow inbound SSH traffic.

BEARIC AR R B K 3 SL VR A B SSHIE R .

metadata = {
enable-oslogin = "TRUE"

}

OS Login is an awesome service that takes away the hassle of managing SSH keys for your instances. Instead
of you being responsible for putting all the keys on each box, Google will take care of that for you. You simply
upload your public SSH key to the OS Login service one time. Then you can access any box with enable-
oslogin = TRUE setin the instance’s metadata.

OS LoginZ—TR R IRS, BIEB T LA EHESSHEHAKIRG . Google R b A¥s Br & BB /ME L 51t
T, MARHARER. BREFE-IREERNAILSSHESH L FI0S Loginik%. #AJE, &A1 LAV)78 L5) o3
#EHRE Tenable-oslogin = TRUE/E{AHE.

https://cloud.google.com/container-optimized-os/docs
https://cloud.google.com/container-optimized-os/docs
https://cloud.google.com/compute/docs/oslogin
https://cloud.google.com/compute/docs/oslogin

> gcloud compute os-login ssh-keys add --key-file=~/.ssh/id_rsa.pub --ttl=365d

The command above uploads your public SSH key and sets it to expire in one year. For bonus points, you can
enable 2FA on OS Login.

EHE AR LB AILSSHEH, HRHBRENE-FNEM. XITRD, EATLEOS Login £)5 HI2FA

o

network_interface {

access_config {}

}

This access config block must be set for the proxy to get a public IP, even if the block is empty. The public
IP will be ephemeral. If you want, you can assign it a static IP.

Bz s, i ARE R B baccess configHUIREAHIP, AXIPHEEER. WMRFTE, AT
HNESB—AFHEIP.

service_account {

scopes = ["cloud-platform"]

}

Here scopes refers to OAuth scopes which affect the Google APIs the service account is allowed to access.
Google Cloud already has a permission system called |IAM. Adding another layer of OAuth permissions on top
of that will needlessly complicate things. You can basically disable them by settingitto "cloud-platform",
i.e. the maximum possible scope.

X B s cope s & 18 B AR 551K P 4% 7845 19 i Google APIFIOAuUthii . Google Cloud B 44A — A4 A IAMK)
R RS . bz EHN5s—EOAuthi R AL ZEHEHIEE 0. BEXR TR HEE N " cloud-
platform"REHEA], BIHKAIREIER-

metadata_startup_script = templatefile("${path.module}/run_cloud_sql_proxy.tpl", { ... })

This is the script that the proxy instance will run on startup. The script is just a bash script with some
Terraform-style $ { } string interpolation, hence the . tp1 (template) extension. The string interpolation is
important, because this is how we pass the service account key to Cloud SQL Proxy.

RRRELFEERINBITHREAE. ZHAERR—bashiid, HH—TerraformiEXis () 775 H I {H,
FHAE . tpl (BR)Y R4 . FRABMEMREE, FNXREIE RS K% H1%%E4% Cloud SQL Proxy 75
o

https://cloud.google.com/compute/docs/oslogin/setup-two-factor-authentication
https://cloud.google.com/compute/docs/oslogin/setup-two-factor-authentication
https://cloud.google.com/iam
https://cloud.google.com/iam

#!/bin/bash
set -euo pipefailecho '${service_account_key}' >/var/svc_account_key.json
chmod 444 /var/svc_account_key.jsondocker pull gcr.io/cloudsql-docker/gce-proxy:latest
docker run \
--rm \
-p 127.0.0.1:5432:3306 \
-v /var/svc_account_key.json:/key.json:ro \
gcr.io/cloudsql-docker/gce-proxy:latest /cloud_sql_proxy \
-credential_ file=/key.json
-ip_address_types=PRIVATE
-instances=${db_instance_name}=tcp:0.0.0.0:3306

cloud_sgl proxy Will only accept the service account key as a file. It can’t be passed through an env var or
by any other means. So we start by echo-ing the JSON key and saving it to the /var directory. /var is
important because Container-Optimized OS only gives you a couple directories that are writeable and
persistent across reboots (I told you it was very secure!). We want the key to be persistent because Google
will occasionally reboot the VM for updates.

cloud sqgl proxyW{UEZRSMK 7 HHAMEAMH. ENREEHELRESAEMHAT 1% FHib, A
Mecho -ing JSONZFH IR HRFR] /var HFEFME. /variREE, K AContainer-Optimized OS{U N 1&fit
TIANEEHFFEUSETHFANERREGFEZXIRIEEZEN!). RIFEXEHRARALE, BA
Googlef b = EH 5| FVMUABEAT B Hi o

echo '${service_account_key}' >/var/svc_account_key.7json

Notice that I'm using single quotes around the ' $ {service account key}'. If you use double quotes,
your JSON key will be mangled. We're risking summoning Cthulhu here by interpolating JSON into Terraform
into bash, so just trust me about using single quotes. Also, you must pass

base64decode (google service account key.key.private key) forthe value of

${service account key}, because the key created by Terraform is base64 encoded.

HER, R $(service account key}' AEMHBAGIS. WMEMHXNGS, WKBIRISONEH. A
B & i@t ¥ JSONHE A TerraformZbashH A #eCthulhufy XUk, FrliEHHERE RMEA RS SHER. Hob,
@ﬁﬁﬁﬁﬁﬁibase64decode(google_service_account_key.key.private_key)ﬂ5
ANs${service_account_key}HIfH, BENTerraformfli % ¥ Ebase64%id].

Next, let’s look at the docker commands.

BTR, ILBATE—Tdocker.

docker pull gcr.io/cloudsql-docker/gce-proxy:latest

Every time the server boots, we want it to pull the latest tagged release of Cloud SQL Proxy. If there are any
security updates to Cloud SQL Proxy, we only need to reboot the VM.

BRRE BN, RATFEERHEH R HRILHCloud SQL ProxyhitA. 1R Cloud SQL Proxy# f£ i %4
PEEH, BAIRTEEHEHVM.

Next, I'll explain all the flags to that crazy docker run command.

BETR, BREMEBEZIIERdocker runti @ HITEIRE.

docker run -p 127.0.0.1:5432:3306 ...

cloud sgl proxy serves on port 3306, even when the db is Postgres. I've taken the liberty of mapping
3306 to the Postgres default port 5432. If you're running MySQL, simply change that flag to -p
127.0.0.1:3306:3306. Notice that I'm only opening the container port for 127.0.0.1. That's because |
plan to use the proxy by first ssh-ing into the proxy box, then running psql in a container. I'll show you the
ssh command at the end that makes this all work. If you need to connect apps to your db, you'll need to
change this flag to just -p 5432:3306.

B fif 5045 FE & Postgres, cloud sqgl proxy®] PAfENG 3306 LfFH. T4 H Bt 330684t £|Postgres
FIBR N 15432, WK IEAEZITMYSQL, R T/ ZMREEBN-p 127.0.0.1:3306:3306 » FE, RA
FH127.0.0. 1HERm . HREARITHEE LMEHRERS B ssh -ingBIRBERSFEF, REE
fTpsqlB#éF. &E, BREMEBRRsshind, FARXETIEEE#HIT. WRETESNHAETEEDHE
FE, NMIT/ERKIFREFES Ajust -p 5432:3306

docker run -v /var/svc_account_key.json:/key.json:ro ...

This is how we get the service account key file into the proxy container. The cloud sql proxy binary in the
container will look for the file at /key.json.

X R RATR AR5 7 B SN AER TR F#EFMcloud sql proxy @I SCHR
fE/key.jsonBIHR T

-ip_address_types=PRIVATE

Thisisa cloud sgl proxy flag that forces it to only connect to the db using a private IP address. The proxy
will encrypt all the traffic it sends to this address.

XR—"Acloud sql proxybr&, MRHEIHAEHAREIPHNLERSIEIERE. ARERINE KIE S ZHIE 0T

-instances=${db_instance_name}=tcp:0.0.0.0:3306

Finally, we specify the db instance we want to connect to (e.g. my-project:us-centrall :my-
instance). We also specify that we want c1oud sqgl proxy to serve TCP on port 3306 (by default it uses
Unix domain sockets).

&G, BAHE e BEERER B E L (Bl Wny-project :us-centrall :my-instance)o RATEHEERA]
#A¥cloud sql proxyfEdiH3306 LRHETCPRSERNVER T, BFHAUNXEEREF).

If you've made it this far, we’ve finally got a secure proxy connected to our private db. There’s just one more
thing to do.

mEFEETALE, BMNATRZEREERINBRMNOAELIEE. T©F —HFBEEMN
i i SSHi% 3 3 ¥ 3% B (Connecting to the db through SSH)

We're going to ssh into the proxy box and run a psg1 container that connects to the db. We're going to do this
with one command.

AV s shImAREHRES, FBT N ERBBIEERpsql Fa. BATRMER — & RIAT ILRAE.
First, you'll need your SSH username. You can get it by running this gc1oud command.

B, BRELWSSHAF Z. BB IETgcloudiRIKME .

> gcloud compute os-login describe-profile | grep username

Now we’ll connect to the db over SSH. If you're running MySQL you'll need to modify this.
WAE, BATHENESSHERZBIEE. WREIEAZTMYSQL, W HENHBTBR.

ssh -t <username>@<proxy-public-ip-address> docker run --rm --network=host -it postgres:11-alpine psql -U p

The --network=host flag means that 1ocalhost will be the same for both the postgres container and
the VM host. This is important because we’ve got two containers running side-by-side: a postgres container
running psql and a gce-proxy container running cloud sgl proxy.cloud sgl proxy IS serving
Onlocalhost, SO psgl needs to connect to the same 1ocalhost. If this is confusing, 'm sorry! Networking
with containers is confusing. All you really need to understand is that the --network=host flag is required.

-—network=hostirEEWKEpostgresBH/MVMEN M localhost A XBEE, FARMNEHNE
BHHEZIT: —PNEfTpsqlMpostgresFa#M—N181Tcloud sql proxy gce-proxyBas.

cloud sql proxyfElocalhost hiRH#EARS, Hitpsql BEZEEBHEH localhost » WMREXALS AN
B, WAR! EHERMERMNEZRE. BEERTE T B RAR--network=hosthrd.

If all went well, you should have successfully connected to your db. If you got lost, that’s okay. This whole
process is bananas complicated. Please check out the GitHub repo for a full working example.

MR —VNEF], WS Z LRI EEDEE . mRERE T, BEXR. XBEMIERER. FE
% GitHub /7% = AR B2 8 1 TAE 71

4 (Conclusion)

There’s more to database security than just network isolation, but if you made it this far you've got a very solid
security foundation. All you have to do to maintain this infra is:

BEEZEAMURTMNERRE, mH, MRABBICALE, SRAFEFRENZEEM. S HEMERTE
BB -

1. Keep your private SSH keys private.
K IERFAE SSHEHB NAE .

2. Restart the proxy instance every once in a while so it can auto-update.

B/RER RSB LR, CMEETLLENEH.

If you do this and still get hacked, it's probably not your fault [
MR B IAE B BRENE, AT REREE D

1% 8 https:/medium.com/swih/how-to-deploy-a-cloud-sql-db-with-a-private-ip-only-using-terraform-e 184b08eca64

terraform

https://docs.docker.com/engine/reference/run/#network-settings
https://docs.docker.com/engine/reference/run/#network-settings
https://github.com/ryboe/private-ip-cloud-sql-db
https://github.com/ryboe/private-ip-cloud-sql-db
https://medium.com/swlh/how-to-deploy-a-cloud-sql-db-with-a-private-ip-only-using-terraform-e184b08eca64

	terraform_如何使用Terraform仅使用私有IP部署Cloud SQL DB
	总览 (Overview)
	先决条件 (Prerequisites)
	使用专用IP地址范围配置VPC (Configuring a VPC with a private IP address range)
	将Cloud SQL数据库配置为仅具有私有IP地址 (Configuring a Cloud SQL db to have a private IP address only)
	使用Cloud SQL代理在您的专用网络中打开一个小Kong，以便您实际上可以访问数据库 (Using Cloud SQL Proxy to open a tiny hole in your private network so you can actually access the db)
	通过SSH连接到数据库 (Connecting to the db through SSH)
	结论 (Conclusion)

