python R EBREEE_{Hpythoni T BB SR

weixin 26747751 o F 2020-09-11 20:59:34 KA o 1037 ﬁ W 11
CEHRLE: python opencv tH BN R A T8 8 MLEE%]

SRR s//medium comybetter-pro ing/image-stegano - uSing- n-2250896e48b9
WA
pythonsz Bl E & ke 5

Steganography is the art of hiding secret data in any file.
FRBBAR R AEAE o] S o R AL 3 B IR I 2R

The secret data can be data of any format like text or even a file. In a nutshell, the main motive of
steganography is to hide the intended information within any file, usually an image, audio, or video, without
actually changing the external appearance of the file, i.e. it should look the same as before.

MR T DL RAE A I BGERE, Blnsek, BERMH. MmEz, BRERKERHKREEMSCH(EYZ
BB, BN ERBRNE S, TEREPRESCCH RS, B, HAMRS AR .

In this blog, we will be focussing on learning image-based steganography, i.e. hiding secret data in an image.
RS, BIAKTETEIZTEERESA, E7ERIG R Ra0E HE

But before diving a little deeper into it, let’s look at what an image comprises of.
ERAERANRN T, LEIEERBEBHR.

1. Pixels are the building blocks of animage.

BREEBIER.

2. Every pixel contains three values: (red, green, blue) also known as RGB values.

BNMREBE=EMME: (L8, K6, HE)WiRAIRGBAE.

3. Every RGB value ranges from 0 to 255.
#ARGB/A 178 Bl 203255,

This much information is enough to get started.
X RBRERRUANTT.
Now, let’s look at how we can encode and decode data into our image.

BAE, ERANVEF W ARBOE S AR N B .
%4577 X (Encoding)

There are a lot of algorithms that can be used to encode data into the image, and in fact, you can also make
one yourself. The one being used in this blog is easy to understand and implement, as well.

AREZFETHTREERGIIEGS, LBFL, SBHRATUECHE. AEZPERR— MBS TEEMSE
Jiti o

The algorithmis as follows:

=073 1l

https://blog.csdn.net/weixin_26747751
https://so.csdn.net/so/search/s.do?q=python&t=blog&o=vip&s=&l=&f=&viparticle=
https://so.csdn.net/so/search/s.do?q=opencv&t=blog&o=vip&s=&l=&f=&viparticle=
https://so.csdn.net/so/search/s.do?q=%25E8%25AE%25A1%25E7%25AE%2597%25E6%259C%25BA%25E8%25A7%2586%25E8%25A7%2589&t=blog&o=vip&s=&l=&f=&viparticle=
https://so.csdn.net/so/search/s.do?q=%25E4%25BA%25BA%25E5%25B7%25A5%25E6%2599%25BA%25E8%2583%25BD&t=blog&o=vip&s=&l=&f=&viparticle=
https://so.csdn.net/so/search/s.do?q=%25E6%259C%25BA%25E5%2599%25A8%25E5%25AD%25A6%25E4%25B9%25A0&t=blog&o=vip&s=&l=&f=&viparticle=
https://medium.com/better-programming/image-steganography-using-python-2250896e48b9

. For each character in the data, its ASClI value is taken and converted into 8-bit binary [1].

ST HAE P BN ERF, R HASCIME I 45 H a8 0r — BEHI[1].

. Three pixels are read at a time having a total of 3*3=9 RGB values. The first eight RGB values are used to store one
character that is converted into an 8-bit binary.

—RER=AMER, BIAAE3*3=9RCBHE. H/\TRCBEMHTHM— TR, ZFIFRKEHEHRA8M
SR IE

. The corresponding RGB value and binary data are compared. If the binary digit is 1 then the RGB value is converted to
odd and, otherwise, even.

LA S KIRGBEA — i Bt . R 7 o81, NWIRGBEKFH B AT, TURHEBEE.

. The ninth value determines if more pixels should be read or not. If there is more data to be read, i.e. encoded or decoded,
then the ninth pixel changes to even. Otherwise, if we want to stop reading pixels further, then make it odd.

BIMEREREMEDEZBRER. WHREA E L L0 Z R (A mADEaFsD), WA MERZAEE

BN, WRBAVEEIESE— P EBER, WEEBOVA .
Repeat this process until all the data is encoded into the image.
HENERE, HIAHERmEEEE .

%1 (Example)

Suppose the message to be hiddenis ‘Hii’.

RRBCEFERAHE R 'Hil o

The message is of three bytes, therefore, the pixels required to encode the data are 3 x3 = 9. Consider a4 x 3

image with a total of 12 pixels, which are sufficient to encode the given data.

ZHBA=AT, Bk, WEEETHEREFTRROBRBEN3x3 =9, EEE N4 xIMER, SFH12MER, &2

PAXT 45 %€ I H0HE AT SRS
[(27, 64, 164), (248, 244, 194), (174, 246, 250), (149, 95, 232),

(188, 156, 169), (71, 167, 127), (132, 173, 97), (113, 69, 206),
(255, 29, 213), (53, 153, 220), (246, 225, 229), (142, 82, 175)]

$1 (Step 1)

The ASCII value of H is 72, whose binary equivalentis 01001000.

HIASCIME R72, H —HHISERMEN01001000 .
%25 (Step 2)

Read the first three pixels.

BRI = MR .
(27, 64, 164), (248, 244, 194), (174, 246, 250)

$ =2 (Step 3)

Now, change the pixel value to odd for 1 and even for 0 as in the binary equivalent of data.

BE, BBREESNINFTEY, EEESCONONTH, mEE K s EnEX.

For example, the first binary digit is 0 and the first RGB value is 27, it needs to be converted to even, which
implies 26.

Blin, FE—ANT#HEEBFE R0, B-PRCBER27 , FEGHEHRABE, XBIKE26 .

Similarly, 64gets converted to 63because the next binary digit is 1so the RGB value should be made odd.
FrE, HT TN HBF R IEeaEHNe3 , FILRGBEM AT

So, the modified pixels are:

Fk, BRERBERA:

(26, 63, 164), (248, 243, 194), (174, 246, 250)

$ 4% (Step 4)

Since we have to encode more data, the last value should be even. Similarly, i can be encoded in this image.
T RAIVL IR E L KIBEE, FEJE —MESZR B R, 17 DR R AT 5D .

While making the pixel values odd/even by doing +1 or -1, you should take care of binary conditions. l.e., the
pixel value should be more than or equal to 0 and less than or equal to 255.

B -1 R RETEN, MES %A B, BREENKTEE TR T8 T255.
The new image will look like:

B BRI R BT :

[(26, 63, 164), (248, 243, 194), (174, 246, 250), (148, 95, 231),
(188, 155, 168), (70, 167, 126), (132, 173, 97), (112, 69, 206),
(254, 29, 213), (53, 153, 220), (246, 225, 229), (142, 82, 175)]

&1 (Decoding)

For decoding, we shall try to find how to reverse the previous algorithm that we used to encode data.

X T RS, AR AR E 0 {8 5 LURT T G B B8 0 B

1. Again, three pixels are read at a time. The first 8 RGB values give us information about the secret data, and the ninth value
tells us whether to move forward or not.

FIFE, —RER=AMER. A8 IRCGBEMBMNRMLAXNELENEL, BOMEEFRIR B LLER
B

For the first eight values, if the value is odd, then the binary bit is 1, otherwise itis 0.
XFET\AME, WRZEAFEH, WZ#FHIA 8, RO .

3. The bits are concatenated to a string, and with every three pixels, we get a byte of secret data, which means one
character.

REABEEERR N TFRE, BEMER, RN\ -AFHROMELRE, XRKRE DT/,

4. Now, if the ninth value is even then we keep reading pixels three at a time, or otherwise, we stop.

B, WRBNMEREE, B2ABATE —KER=EAEBER, SUERAITEE L,

#lin (For example)

Let’s start reading three pixels at a time.
AT — IR =AM R

Consider our previously encoded image.

BRI MDA BB

[(26, 63, 164), (248, 243, 194), (174, 246, 250), (148, 95, 231),
(188, 155, 168), (70, 167, 126), (132, 173, 97), (112, 69, 206),
(254, 29, 213), (53, 153, 220), (246, 225, 229), (142, 82, 175)]

$15 (Step 1)

We first read the three pixels:

BATELHAEZ=EER:

[(26, 63, 164), (248, 243, 194), (174, 246, 250)

%25 (Step 2)

Reading the first value: 2 6, which is even, therefore the binary bit is 0. Similarly, for 63, the binary bit is 1and
for 164itis 0. This process continues until the eight RGB value.

BEBEE—ME: 26, CRMEH, FLITHHIMZ . RO, MTFe3, ZHHIMIAL, WFi164h0 . &L
BE—ERFE3)\ RGBENIE.

$ =2 (Step 3)

We finally get the binary value: 01001000 after concatenating all individual binary values. The final binary
data corresponds to decimal value 72, and in ASCII, it represents the character H.

EEMAE RN ZHEERE, BRINRLKBHGME: 01001000 « BEHTHHEBIES R FHiEHIET2, HH
LAASCIFE AR 751

$ 45 (Step 4)

Since the ninth value is even, we repeat the above steps. We stop when the ninth value encountered is odd.
HTEAMERBEH, FLRNES LRPER. HEIWE L MERLTHR, RIUFL.

As a result, we get our original message back which was Hii.

3R, BABANEEHEERELL .

The Python program for the above algorithm is as follows:

AT EiRE K Pythonfe 7 0 T -

Python program implementing Image Steganography

PIL module is used to extract
pixels of image and modify it
from PIL import Image

Convert encoding data into 8-bit binary
form using ASCII value of characters
def genData(data):

list of binary codes
of given data
newd = []

for i in data:
newd.append(format(ord(i), 'e8b"))
return newd

Pixels are modified according to the
8-bit binary data and finally returned
def modPix(pix, data):

datalist = genData(data)
lendata = len(datalist)
imdata = iter(pix)

for i in range(lendata):

Extracting 3 pixels at a time

pix = [value for value in imdata._ next_ ()[:3] +
imdata.__next_ ()[:3] +
imdata.__next_ ()[:3]]

Pixel value should be made
odd for 1 and even for ©
for j in range(o9, 8):
if (datalist[i][j] == '@' and pix[j]% 2 != @):
pix[j] -=1

elif (datalist[i][j] == '1' and pix[j] % 2 == 0):
if(pix[j] !'= @):
pix[j] -= 1
else:
pix[j] += 1
pix[j] -= 1

Eighth pixel of every set tells
whether to stop ot read further.
@ means keep reading; 1 means thec
message is over.
if (i == lendata - 1):
if (nivl-11 % 2 == a)-

A \pEAL w] v o= v

if(pix[-1] != 0):

pix[-1] -= 1
else:
pix[-1] += 1
else:
if (pix[-1] % 2 != 9):
pix[-1] -= 1

pix = tuple(pix)
yield pix[0:3]
yield pix[3:6]
yield pix[6:9]

def encode_enc(newimg, data):
W = newimg.size[0]
(X, y) = (@, 0)

for pixel in modPix(newimg.getdata(), data):

Putting modified pixels in the new image
newimg.putpixel((x, y), pixel)
if (x ==w - 1):

X =0

y += 1
else:

X +=1

Encode data into image

def encode():
img = input("Enter image name(with extension) : ")
image = Image.open(img, 'r')

data = input("Enter data to be encoded : ")
if (len(data) == 0):
raise ValueError('Data is empty')

newimg = image.copy()
encode_enc(newimg, data)

new_img _name = input("Enter the name of new image(with extension) : ")
newimg.save(new_img_name, str(new_img name.split(".")[1].upper()))

Decode the data in the image

def decode():
img = input("Enter image name(with extension) : ")
image = Image.open(img, 'r')

data = "'
imgdata = iter(image.getdata())

while (True):
pixels = [value for value in imgdata.__next_ ()[:3] +
imgdata._ next_ ()[:3] +
imgdata. next_ ()[:3]]

string of binary data
binstr = "'

for i in pixels[:8]:
if (i % 2 == 09):
binstr += '0°'

else:
binstr += '1°'

data += chr(int(binstr, 2))
if (pixels[-1] % 2 != 0@):
return data

Main Function
def main():
a = int(input(":: Welcome to Steganography ::\n"
"1. Encode\n2. Decode\n"))
if (a == 1):
encode()

elif (a == 2):

print("Decoded Word : " + decode())
else:

raise Exception("Enter correct input")

Driver Code

if __name__ == '__main__

Calling main function
main()

The module used in the program is PIL which stands for Python Imaging Library. It gives us the capability to
perform operations on images in Python.

T2 48 B R PIL 3R Python Imaging Library . &5 BAIRE# 7E Python b it BB H AT #1E .
247 (Program Execution)

Image for post

https://www.pythonware.com/products/pil/
https://www.pythonware.com/products/pil/

) : newImage.png

#i A\ El# (Inputimage)

Image for post

fi i B8 (Output image)

JABR#E: (Limitations)

This program might not work as expected with JPEG images because JPEG uses which
means that the pixels are modified to compress the image and reduce the quality, therefore data loss happens.

ZEF A e L S5 JPEG—EMEA BB, B NJPEGHH , REWEBRBRUESEEGIFERE,

A GUI version of the program can be found here:

ZAE 7 B GUIRRCA AT BATEIX LK 2

MER:

pythonst LE B s 5

https://en.wikipedia.org/wiki/Lossy_compression
https://en.wikipedia.org/wiki/Lossy_compression
https://www.geeksforgeeks.org/program-decimal-binary-conversion/
https://www.geeksforgeeks.org/program-decimal-binary-conversion/
https://www.geeksforgeeks.org/working-images-python/
https://www.geeksforgeeks.org/working-images-python/
https://dev.to/erikwhiting88/let-s-hide-a-secret-message-in-an-image-with-python-and-opencv-1jf5
https://dev.to/erikwhiting88/let-s-hide-a-secret-message-in-an-image-with-python-and-opencv-1jf5
https://github.com/goelashwin36/image-steganography
https://github.com/goelashwin36/image-steganography
https://github.com/goelashwin36/image-steganography
https://medium.com/better-programming/image-steganography-using-python-2250896e48b9

	python实现图像隐写_使用python进行图像隐写术
	编码方式 (Encoding)
	例 (Example)

	第1步 (Step 1)
	第2步 (Step 2)
	第三步 (Step 3)
	第4步 (Step 4)
	解码 (Decoding)
	例如 (For example)

	第1步 (Step 1)
	第2步 (Step 2)
	第三步 (Step 3)
	第4步 (Step 4)
	程序执行 (Program Execution)
	输入图像 (Input image)
	输出图像 (Output image)

	局限性 (Limitations)
	https://www.geeksforgeeks.org/program-decimal-binary-conversion/ https://www.geeksforgeeks.org/program-decimal-binary-conversion/ https://www.geeksforgeeks.org/working-images-python/ https://www.geeksforgeeks.org/working-images-python/ https://dev.to/erikwhiting88/let-s-hide-a-secret-message-in-an-image-with-python-and-opencv-1jf5 https://dev.to/erikwhiting88/let-s-hide-a-secret-message-in-an-image-with-python-and-opencv-1jf5 A GUI version of the program can be found here: https://github.com/goelashwin36/image-steganography 该程序的GUI版本可以在这里找到： https : //github.com/goelashwin36/image-steganography

