hacker Hacker101 CTF: AndroidBkik &

weixin 26722031 o F 2020-08-01 153936 KA o 559 ﬁ e

X EHRZ: android python

SRR s//medium comybugbo iteup/hacker101-ctf-android-challenge-writeups-f830a382¢3ce
RRAR

hacker

In this article, | will be demonstrating how to solve the Hacker101 CTF (Capture The Flag) challenges for the
Android category. Hacker101 is a free educational site for hackers, run by HackerOne.

A, R AT AR Android2E B i Hacker101 CTF (i35 E) 8. Hacker101& HHackerOne& &
i 5 TR IR R R BB P

% 51 7 B (Disclaimer)

| was motivated to make this article out of a desire to learn more about Android mobile application security.
This writeup will obviously contain spoilers and | encourage readers to attempt this CTF before reading this
article. Try to solve as many of these challenges as you can and then come back later to read this article if you
get stuck or want to see a potentially different approach to solving a challenge. Without any further delay, lets
jump in (!

H TR ¥ 3 L H KANdroid B s M AR 7 Z KB RN G .. ZXEERRBEETIRE, KRB
BEREALZ A ZRERHCTF. SR Xk, WREBSINMESAE T R RIS ETTE, HH
JERREARI . BEEME—DRER, ERAIBAD!

H1B %8 (%%, 24945&) (H1 Thermostat (Easy, 2 Flags))

| started this challenge by downloading the application APK file and installing it on my emulator device using
Android Debug Bridge (ADB)

s T R 2 P APK SO 948 Fl Android Debug Bridge (ADB) H 2235 7EE L 38 ¥ 4 B TIFF46 T X Tk
%

adb install thermostat.apk

Opening the application showed that it only had a single activity with a thermostat and a gauge, allowing the
user to raise or lower the temperature setting.

T ZNARERFERYA, ERE - MHEERSMURIES, ST REERERE R E.

Image for post
Next, | generated a static analysis report for the APK file using the Mobile Security Framework (MobSF)
tool. | started reviewing the report by examining the AndroidManifest.xml file.

BTk, REABHLZEHELE (MobSF)T ENAPKHAER T SO RE . RiETk
25 AndroidManifest. xml XX FF I BB R .

Image for post

https://blog.csdn.net/weixin_26722031
https://so.csdn.net/so/search/s.do?q=android&t=blog&o=vip&s=&l=&f=&viparticle=
https://so.csdn.net/so/search/s.do?q=python&t=blog&o=vip&s=&l=&f=&viparticle=
https://medium.com/bugbountywriteup/hacker101-ctf-android-challenge-writeups-f830a382c3ce
https://www.hacker101.com/
https://www.hackerone.com/
https://www.hacker101.com/
https://www.hackerone.com/

Looking through the manifest file, | can see that the application has requested only the
android.permission.INTERNET permission, which allows the application to create network sockets. The
developer has set the attributes android:usesCleartextTraffic and android:allowBackup to true which
means the application intends to use cleartext traffic and can have it's contents backed up by the user.

BEIBHEM, 7 EBZNARFER T android.permission.INTERNETAUR, %A BR 7o ¥ % 5 72 61
EMKEETY. FFARARERKandroid: usesCleartextTrafficflandroid: allowBackup/& 4 i & Mtrue ,
XEWENAEFITEMRHARE, FETTUREANEHAP &5

The application also appears to only have two components. A activity called

com.hacker101.level 11. ThermosActivity has been declared with an intent filter. A content provider called
ProcessLifecycleOwnerlnitializer has also been declared but it is not exported. | decided to examine the java
source code for the com.hacker101.level 11. ThermosActivity.

ZNARFUTFERERANAY. EATHERTEREHT 142
J~hcom.hacker101.level 11. ThermosActivityi1i&sh . & B T —4~4% M ProcessLifecycleOwnerlnitializertt
RRBER , BREH. ke Ecom.hacker101.level11. ThermosActivityffJavaii g .

Image for post
Looking through the source code of the activity, | noted that a network request was being made. A class called
PayloadRequest was used inside this network request as seen highlighted in green. Examining the source
code for the PayloadRequest class, | discover both flags for the challenge.

B EEEIRIRAMN, RERIEEREMEER. MROREEREBEE, EHRMEFRPHERT —AK
N PayloadRequestif135. 2 PayloadRequestZiITEMRMG, AT BERKIPIAFE .

Image for post
It appears that one flag is hashed using MD5 and then base64 encoded before being added as a value to a

header called X-MAC. The other flag is simply added as a plaintext value to the header X-Flag. | can use the
tool BurpSuite to intercept this network request when interacting with the application.

AP RAEFIMDSX — MR E BT T IR AL H, AR5 H#HAT T base64Zmty,)5 HKR HAERERINE 2 RX-
MACHI#s k. F—MrE R RIEAACAERFMBIRLX-Flag . S5MABEF#TZEN, RATUFEHRT
HBurpSuite & It W %1% 3K .

Image for post
As seen in the image above, the intercepted network request shows the X-MAC and X-Flag headers with their
equivalent values. Nice and easy for the first challenge !

m EEFTR, BIREIMLIE R ERX-MACHIX-Flaghs sk R L E8MH. BIaRSTE— k0!
FRBIE(PSE, 1445 &) (Intentional Exercise (Moderate, 1 Flag))

Following a similar approach as seen in the previous challenge, | installed the application using ADB and
generated a static analysis report of the APK file using MobSF. Opening the application showed an activity
with a welcome message and a link called “Flag”.

R E— AT R BRI %, BAEMADBZR A T MR, - FMobSFAE R T APKICIF I E# &S i
Wi FTTHRARRFERT —ANA IR BME R Flag” RS ES)

Image for post
Clicking on the link leads to a “Invalid request” error. Guess it won’t be that easy (1.

RSB EBIEREIR. BEBARBLAES .

Image for post

As seen with the previous challenge, | started by looking at the manifest file for the application. There is only
one activity declared in the manifest file. What standouts about the activity, is that it has been declared with
three intent filters. The two intent filters surrounded by green in the image below shows how you create a
deep links for your app’s content (see references).

ME=ADREEFTTUF L, RELEE T NHBEFRERXH. HRXHPNERT —IES) . ZEHR
HZAET, BB =AIntentid I H#T T HH. TEPZABEKPHANERELIES TR T 0 ANARE
FHACIRRE#E (BSHSEREH).

N.B. Deep Links are a concept that help users navigate between the web and applications. They are basically URLs

which navigate users directly to the specific content in applications.

NB Deep Links2— M, ™ UAHBIFA P 7EWeb MM FRRF 2B S/i. EN1ZE4LRURL, "PRAHFEESHEINA
R %S E A

Image for post
To test the first deep link (i.e. http), | can use ADB with the activity manager (am) tool to test that the intent
filter URI's specified for deep linking resolve to the correct app activity. The command seen below successfully
starts the main activity for the application.

N T PR — MR B EEE (A http), RATLLKADBSEZE S (am) LA —&EM, I NREEEEENE
Bl 8 AR URLR 5 7] LA N IEF B N AR P& 3. T SaKar 2B a3 T AR EZES).

adb shell am start -W -a "android.intent.action.VIEW" -d "http://levell3.hacker10l.com" com.hacker10l.level

| decided to look at the source code for the MainActivity. Looking through the java code, | can see that the
application creates a WebView. Two string variables are also declared, with the variable str containing a
hardcoded URL.

LikE HEMainActivityIERIS . EFJavaflid, ATUERZNAEFQE T — 1 MWebView . &EFHTH
MFRERRR, HhZREstr@ S mi%rURL.
N.B. The URL for your application will be different.

EE: BHMNAEFRURLEAR.

Image for post
Entering this URL into a browser brings up the same page seen earlier in the application’s main activity.

FED B 8% A A ZURL& 3 5 12 N AR PP 2 B3 3l Hh 56 i i L 0T 4 =)) T

Image for post
Clicking the Flag link still returns an invalid request.

AR B EERAIARIE B BRI IE R

Image for post

Looking at the source code again, | saw that the application retrieved the data stored in the intent used to
launch the main activity. Examining the manifest file from earlier, | know that this data is the
http://level13.hacker101.com URL. The application then proceeds to use the java subString(28) method to
ignore the first 28 characters (i.e. http://level13.hacker101.com URL) in the data string retrieved from the
intent and appends the remaining string value in the str2 variable with the hardcoded URL link string in the str
variable. The application then checks if the string contains a “?”and adds it to the end of the string if it does
not.

BREERRE, RRIANHAEFER THAEEA TR FEEINASPREEE. NiTHREBERXHE, &
518 HEIE 2 http:/llevel13.hacker101.com Mk. #RJ5, R4 4% Hjava subString(28)75 %k 2 B&
MIntenti 2 2 i B 7745 5 T T 284 7245 (B http:/llevel13.hacker101.com URL), 3F¥H 4 5545 8 18 Bt
mejstr2z g . EstrE 2R FABREHURLEZETZ/AE. R, NABRFREFFEREREE? 7, W
BEAENEHAZMB| 2R FIRE.

Image for post
I do not know what the value of str2 is yet based on my static analysis thus far. The final value of str so far is a
combination of the hardcoded URL link, the the str2 value (Which at this point is just an empty string) and
the “?” at the end of the string.

BAFIEstr2iER S D> BIEAAIE, R TREFEINT. BIHBTNIE, stridHR&E 28 % 5% URLEEE ,
str2ff (MR UR—ANZEFRFH)M“? "HAE EFFHERIRE.

http://34.74.105.127/398abac4c8/appRoot 'empty str2 value'?

The final block of code consists of creating a message digest using the SHA-256 hashing algorithm. The hash
is updated twice. The first is with a key called s00p3rs3c3rtk3y and the second is with the str2 value. The
WebView will then load a newly constructed URL which includes the str value (i.e.URL), the string “&hash”
and the SHA-256 hash value.

BJEARER AR HSHA256M A HEEAEBEEME. MAEKEENHK. F—IREHE
s00p3rs3c3rtk3y 1% 4H /N2 str2f . A5, WebViewlg i — M MURL, Ko afEstr &
(BFURL), FZfF5" & hash”f1ISHA-2560 7 1& .

Image for post
The final constructed URL so far can be seen below:

B HANIE, BREMIERURLIT Fx:

http://34.94.3.143/empty str2 value'?&hash="hash value"

Using a tool called BurpSuite, | can intercept the request made by the application when it is launched and
observe the URL that is constructed by the MainActivity source code.

f# FH 4 BurpSuite) TR, TAIIERBINHAEFNERNHAERKHRER, HWEHMainActivitylZHR 5
& FIURL.

Image for post
Looking at the host value and GET request made by the application, | can see the full URL.

BENHERRHENEMGETIER, RAIUEREEMURL.

http://35.227.24.107/3ef212b832/appRoot ?&hash=61f4518d. . .etc

N.B. The number value in the URL (i.e. 3ef212b832) has changed due to me downloading a new version of the app.

HE: BTRTRTHRAKMARERF, URL(EI3ef212b832)+ K (L k.

Entering this value into the URL will still just bring me to the default WebView with a link to get the flag. | know
that this link is used to get the flag somehow and by looking at the page source for the link, | can see that it
uses /flagBearer as part of the URL address. This is placed right after appRoot and could be the missing str2
value.

FEURLH N IL B TPH AU Rk N BRINWebView, F A RBUZAR S8R, RANE R T AEM 7 3R
Bk, BEEFZEENTEIE, RATUESEM A flagBearerfE AURLHLME 1 —3#B 5. BEME
ftappRoot2 J5, T EERHRDHstr2fE .

Image for post
If | add /flagBearer to where the missing str2 value should be, | have the following URL path.

WREHK/ flagBeareridvin 2| iz s /b Fistr2EH AL B, WK EH UL FURLEZ.

http://35.227.24.107/3ef212b832/appRoot/flagBearer?&hash=61f4518d. . .etc

Entering this URL path into my browser presents a new error message which says “Invalid hash”.

FERIIHE RPN ZURLEE S B — % IRE S, WA Invalid hash 7,

Image for post
This means that /flagBearer is the unknown str2 value and can be confirmed by typing other values in it's
place, which results in a Not Found error.

XEIRE] flagBearerZ RANHIstr2(d, W DU 7EH A B AN FHARE RN, M- FBRLEIEHR.

Image for post
Despite having the correct URL path, | am stilled presented with a hash error. As seen earlier while statically
analyzing the MainActivity source code, the str2 value (i.e. /flagBearer) is used with the key s00p3rs3c3rtk3y
to make up the full SHA-256 hash. However, since the data URL path specified in the intent filter (i.e.
http://level 13.hacker101.com) does not contain the string /flagBearer and is completely ignored by the the
java subString(28) method, the str2 value is left empty. This means the hash is incorrect since there is no
value present in str2 (i.e. /flagBearer).

RERAFIEHNURLEER, BEIAHIAREEIR. WATANR, EBHESSTMainActivitylRARSES, str2{E (8/
flagBearer)5 %#s00p3rs3c3rtk3y — & i F e B FISHA256M % . (Hi2, HTAEEET IS

(BN http://level 13.hacker101.com) #5 % HIE#E URLER 2 AN & 47 8/ flagBearer, 3 Hijava
subString(28) 7158 & A 8E, FHitstr2 HRE AT . XEREMIRAIEHR, FAEstr2d A E B/
flagBearer).

This is where the deep links come into play. After reading an article titled “ The Zaheck of Android Deep
Links?’ (see references), | learnt that if there is insufficient URL validation being carried out then | can load
my own arbitrary URL. | know that no URL validation is being performed on the URL used to trigger the intent
filter and launch the application’s Main Activity. This means | can provide my own URL with the /flagBearer
path attached, which will launch the Main Activity and result in the str2 value being equal to /flagBearer. | can
accomplish this by using ADB, as seen previously above when testing the intent filter URI's.

XMREEBRRREERNMY . PIRREA" AndroidiR/E##Z)Zaheck! "(ES RS LR), RT#

B, MEPTHURLEIEAR L , WALUNEE CHERURL . REER A XA Tk & B 58828038 30 8 A
BRI EESHURLEITURLIGIE. XERER A LLE A/ flagBeareri2fit H . IURL MINHIBEE, EXE3)
Main Activity 7 5 8tstr2/6 % T/ flagBearer . 3R 7] L@ FHADBR 58 UL BR A, | i 72 0k A Rl i i 2%
URIES BT W,

adb shell am start -W -a "android.intent.action.VIEW" -d "http://levell3.hackerl@l.com/flagBearer" com.hack

This results in the flag being presented (.

XIBHrCERAL.

Image for post
Another approach to solve this challenge without using the deep link is to simply create the hash yourself by
combining the key s00p3rs3c3rtk3y and the /flagBearer string. | used an online tool called CyberChef to
create the SHA-256 hash.

76 715 P IR 2 B2 B M A e L SR 5 — R vk 2, iRIE 4 A4 s00p3rs3c3rtk3y H O i bl B s A A/
flagBearer##i& . Ff#FH T —4 4% NCyberCheff7E £k T B KA SHA-25614 7

Image for post
| then added this new hash to my URL path, giving me the flag.

WG, REELFRAHMBIROURLER, Hae T RIEZRE
Image for post

Oauthbreaker(F%, 24-#3&) (Oauthbreaker (Moderate, 2 Flags))

Using ADB and MobSF, | again installed the application and generated a static analysis report. Opening the
application, | am greeted with an activity with a button that says authenticate.

fE FJADBHIMobSF, HER%Z®K T ZMHABRFIHFAER T#STRE. THANHRERF, RES—NEES0%E
RSN

Image for post
Clicking on this button, the WebView browser on my emulator is opened with an address in the URL bar and a
link to authorize my mobile application.

B AL, RTINS BRI WebViews Wi g%, HAEURLE B — Ml JRRME—MEERRNEBKE
BN AR -

Image for post
The full address in the URL bar can be seen below.

P BkA r) SE B AR I0 T BT R o

http://34.74.105.127/81857ddddb/oauth?redirect_url=oauth%3A%2F%2Ffinal%2Flogin&response_type=token&scope=al

Clicking on the Authorize Mobile Application link brings me to a new activity, with a message saying | have
“Successfully authenticated via OAuth!”.

Rl BB AR SRR — N EES), HER—FHE, Ry Ol OAuthl Y BiE! .

Image for post

http://34.74.105.127/81857ddddb/oauth?redirect_url=oauth%253A%252F%252Ffinal%252Flogin&response_type=token&scope=all

While exploring the functionality of the application, | decided to open the URL shown in the WebView browser
on my emulator. While looking at the source code for this page, | discovered the first flag.

FERRMHEF TR, e ERMEE 3T WebViewd %38 1 &R URL. 7EEE M T A YRARASES
BERTHE—IME .

Image for post
Examining the Android Manifest file showed that two activities called “com.hacker101.oauth.Browser’ and
“com.hacker101.oauth.MainActivity’ were declared with intent filters. As seen with the previous challenge,
these intent filters are used to create deep links.

K #Android Manifest3e 4 Bor, FHARETERHEH THA4L
Jycom.hacker101.oauth.Browserfcom.hacker101.oauth.MainActivity £ #&#h . M _E—MHkEP T LB,
X R RS EREA TR E .

Image for post
After reviewing the manifest file, | started to look at the source code for the MainActivity. When the Main
Activity is created, a variable called authRedirectUri is equal to the value “oauth://final/”. This is the deep
link URL used to bring the user to the Browser activity. The data contained in the intent used to launch the
Main Activity is retrieved and checked to see if it has any data or if the query parameter redirect_uri is null. If
the intent parameter redirect_uri is not null, then the value of this parameter is assigned to authRedirectUri.

BEBERXME, RIFHBEFMainActivity1IER55 . SIZEE3E, 4 ~authRedirectUriff 2 &% FEH"
oauth: //final/”. XEH TR MWEHENNREHEZURL. RERIFBIIHTEIHEEINEESHE
SR, FREERTEGEMENE, & E#HSHredirect_uriZ T Anull. WREZRE S Hredirect_urifs
Janull, NPkt 230 {E 3 Bl 45 authRedirectUri .

Image for post
Further down, | can see that when | click the button “Authenticate”, a URL is constructed which includes the
URL encoded authRedirectUri value. A new intent is then created and the URL is added as data to this
intent. This intent is then used to trigger the Browser activity.

BAETE, REINURETIHM Authenticate "7/, B E—AURL, HAEIEURLIMY
fauthRedirectUrifi. RAEEIE—ANFHHEE, HKURUEAMSHERMBZEE. K5, HWEEM TR
WaRES .

Image for post
From this source code, | can see that the user will be redirected to whatever the redirect_uri parameter

value is. To test this, | can assign a value to the redirect_uri intent parameter and observe if it successfully
redirects me.

MILIEARRG T, RATLLE B PR E E | B L itredirect_uriBER—RH 4. NTHRX—A, RATLL
Aredirect_uri intentZ2 7B —ME, FURELERINEEN T K.

adb shell am start -W -a "android.intent.action.VIEW" -d "oauth://final/redirect_uri=https://ctftime.org/"

This works and | am successfully redirected to the ctftime.org website. The first flag is also shown in the URL.

XATLAEHR TAE, REBRINEE M B ctitime.orgMil. F—MrEHEREURLE .

Image for post

| was still unsure about how to use this exploit, so | decided to start looking at the Browser activity. | saw that
a private class called SSLTolerentWebViewClient is created. Inside this class, the
shouldOverrideUrlLoading() method is declared which allows the host application a chance to take control
when a URL is about to be loaded in the current WebView (see references). This explains why the WebView
browser is opened on my emulator. The method Ss/ErrorHandler() is also declared and is used to simply
ignore SSL errors.

RAIRA & I {3 P UL IR, BRIL IR Ve FF UGB i Browseri& s . REFICIET — 14
K SSLTolerentWebViewClientt #\ 3. TEMKANER, 78 T shouldOverrideUrlLoading()77 %, &5 iEEE
VUM AR A ISE A WebView Z B URLN #TEH(ES RS EHH). XMW T A AERIEN
8 LT WebViewH %8s . &7 B8 T 5% SslErrorHandler(), %77 (XA T ZB#ESSLAL R .

Image for post
Moving further down in the source code, | can see that a variable called str is declared with the value set to a
URL address. This URL address is the success message | saw earlier, which tells me | am authenticated. The
data from the intent used to launch the activity and the intent parameter called uri are checked to see if it is
null. The str value is then made equal to the data contained in the uri intent parameter.

EREREY#E—PETE, RUTUEI N AstriiZE. FHRNEFREANURLEBEME. ZURLHLHE R
ZHEIRRIIEE, SRREETGHEIE. BEHTENEINEEEENL AuriBESHEETNE.
ARG Fstr{ 2 Turi intentS3h A A B EE .

Image for post
Beneath this, | can see that a new WebView is created. Two important pieces of information are noted when
the WebView is being created. The first is that the WebView has enabled JavaScript execution using
setJavascriptEnabled(). The second is that the method addJavascriptinterface() is declared. This injects a
supplied Java object into the WebView and allows the Java object’s methods to be accessed from
JavaScript. This method takes two parameters:

EHZ T, WATLERGIE T — M WebView. BI#&WebViewsf 2EEHANEEFE. BB ZWebViewf#
F setJavascriptEnabled()ja Fil T JavaScriptii T . 2 =4~ B JyikaddJavascriptinterface() . X4 ¥ 24t
KJavaxt Gk AWebView, 37t MJavaScriptij i Javadf R HE: . WHEERINSE:

The class instance to bind to JavaScript (i.e. WebApplnterface)
41 % #|JavaScriptit 38 s2 451 (B WebApplnterface)
The name to be used to expose the instance in JavaScript (i.e. iface).

F T 7EJavaScriptH A FF L5 i) 4 Fxr (P iface).

Image for post
This allows me to take control of any methods inside the WebApplnterface class. Looking at this class, | can
see an interesting method called getFlagPath(). This method contains what appears to be a large array of int
values as seen below.

XAEFR AT LIz H|WebAppinterface 2 N AR k. BRXAE, RATUER—ANFERHTE, K
AgetFlagPath() . ZHEEE—NEURERINESH, WTHHR.

Image for post
The code below this appears to perform a variety of operations that result in a path to a html file being created.

BEARHS T T ARSI PAT T & FhiRAE, XL EAE S ERIZhtmIS A 1B 42

Image for post
Image for post

To call this method, | can create a simple web page using Github Pages. | can then add the following
JavaScript seen below to the web page, which will call the getFlagPath() method using the “iface” name
which exposes the class instance.

BRI, BT LME A Github Pagesf#—ME MM, A5, FRATLLK T H 275~ 1 LT JavaScriptés
BT, %M TR iface " & #R 1A FlgetFlagPath() 515, L&A T HRELH,

Image for post
Next, | can redirect to my Github Pages website as seen earlier by assigning the uri parameter with the sites
URL address as it's value when calling the Browser activity.

BTk, JATLAEE M FRKGithub PagesM ki, I BiRT A, 7 LUl 7E i F Browse i 3 i Jyuriz 73 ic
uli URLM BV E M HAE

adb shell am start -W -a "android.intent.action.VIEW" -d "oauth://final/uri=https://github.website.url” com

This results in a path for a HTML page.
X S BHTMLIT T i #5542 .

Image for post
| can simply add this path for the HTML file to the end of the address seen below.

FAT DA fa] B U HT MLSCA B L B AR 8 i 21 UL T sk R B

http://34.94.3.143/cb1f155695/path-to-flag.html

This gives me the second flag 1.

XA THRE-ARE .
Image for post

3 WebDev(+4%, 24 #5&) (Mobile WebDev (Moderate, 2 Flags))

Once again, using ADB and MobSF, | installed the application and generated a static analysis report. Opening
the application, | am greeted with an activity which allows me to refresh the page and edit the pages content.

FXfEFHADBHIMobSF, %% T M AR AR T BSMTiRE . T ZNARRF, REHT —MNE3, &
T B B AT AR B DT S S 8 DL T P 2

Image for post
Clicking on the edit button displays a new page which shows the files | can edit.

B EERHS ER AR, Hh B T R UmERSH.

Image for post
Clinking on the file allows me to edit it.

T 24 iy S8 AT DA HL 34T G 4

Image for post
If I click save and return to view, | can see that my edit has been applied.

WRBE R FIREIEE, WATUEBBRAESEME,

Image for post

After looking at the functionality of the application, | moved on to examining the Android Manifest file for the
application. Only one activity called MainActivity has been declared.

EBE T SARFNRLIE, RIS %R AR H1Android ManifestscfF. XA B T —AFk
K MainActivity 9 i&3h .
Image for post

| decided to look at the source code for the MainActivity. Reading down through the source code, | first notice
a variable called HmacKey with a string value which appears to be a private key.

B BE MainActivity RS . BEIEARE, RELERES— N8B AHmacKeyIEE, EHF/FEEBT
22— .

Image for post
Further down, | see a method called Hmac() which has not been implemented yet, as hinted by the exception
message.

BETE, REI-MAHmac()KIT5iE, TEMAREI, WREHEEFRR.

Image for post
Below this, | find the rest of the source code which facilitates the functionality of the application as seen earlier.
| can see the different URLs used for viewing and editing content. | can also see that JavaScript has been
enabled for the WebView that displays content.

FERHZ T, REBTHKMERY, XEEAREEE T MARFRIIE, wiffid. RUUEIHATEENSR
HBHNAEPAFRIURL, RIET LLE 248 8RN A WebView)s A T JavaScript.

Image for post
| wasn't really sure what to do with the HMAC key at first, so | ended up trying some different approaches. For
example, my initial instinct was to see if | could perform an XSS attack since | could edit the content of the page
and JavaScript execution was enabled in the WebView. | presumed if | could execute some JavaScript, a flag
might present itself. | added some JavaScript to the index.html page as seen below.

B TA K E Z WA EAHMACEH, HREAZHRT —BARKTE. i, RORVENREERSE
AT PABATXSSH i, B NI A LLgmiE W N A, FE BAEWebView j5 i T JavaScriptihAT . FIEHE R
PABAT —2eJavaScript, ARESHI—/MrdE. BAEindex htmITTHEH N T —E&JavaScript, WTF .

Image for post
After saving the file and viewing the contents page in my browser, | can see the XSS attack works but no flag is
displayed.

WA HAENRSTEEATTEE, RAUBBXSSHEHER, HEREREMFE.

Image for post
After looking around some more, | eventually found a clue on the edit.php page. A comment left by the
developer referred to a page called upload.php.

BEITEZZE, RE&fieditphpUm LB T —HK&R. TFRANRE T HPFRTER >4 Nupload.phpi 5T
[i8

Image for post
As the name suggests, when | visit this page | can upload a file.

[E S O B RN AT P A I o

Image for post
Looking at the page source, | can see that the upload form accepts zp files.

BEUEBERE, RATUE D LR AERZp .

Image for post
When | attempt to upload a zip file however, | am presented with the following error.

B, HEERK Efezp3e by, HILLTFHEIR.

Image for post
It appears that | need to provide a HMAC signature when uploading my zip file.

LP-7E b A% Zip S R Z R HEHMACRE 4

N.B. The HMAC algorithm can be used to verify the integrity of information passed between applications or stored in a
potentially vulnerable location. The basic idea is to generate a cryptographic hash of the actual data combined with a
shared secret key. The resulting hash can then be used to check the transmitted or stored message to determine a

level of trust, without transmitting the secret key.

EBHMACH ik il T W EAE N AR Z A& S B R ERFMCENE RN . EARERERSHEE
PASKLREE MMERS . RE, TLUCKETE KRS H TRE SRR KHE S D e F eSS, MEREE
.

Now that | know the purpose of the HMAC private key, | can proceed to create a HMAC signature. To achieve
this | used a simple python script available online (see references) that computes an HMAC signature.

BER B AnE THMACR AR AE, AT A EBHMACRE 4 T . Ak, REM T —MELRBLH 8
pythonli A (EZ 2% Bk RiHEHMACRE 4 .

Image for post
Executing this script generates my HMAC signature, as seen below.

PAT R A A IR HMACE & , I AR

Image for post
Using Burpsuite, | can then upload my zip file again and this time add my HMAC signature to the POST
request as another section in the body of the request.

)5, 1M Burpsuite, BATLLER LA&zp3CH, XK ERKIHMACRE A HMEIPOSTHRH, 1ERiIERIEXH
H57— 8.

Image for post
This is successful and results in the first flag being displayed.

RRBIK, HIBEFRBE-IMRE .

Image for post
Upon successfully uploading the zip file, a message is displayed which says that the zip file has been extracted
to a folder called /temp but needs to be copied to the /content folder.

B EAEZip G, BER—FKEE, R ZZpX e IR B L A templ SXcE s, HEEEELEH)/
content>C 43+,

Image for post
After some searching online for Zip file upload directory traversal vulnerabilities, | discovered a vulnerability
called the Zip Slip vulnerability.

FEM L RzipCH B BB HRE)E, BRI T —4% NZp SlipkFE KRR .

N.B. A Zip Slip vulnerability allows attackers to create Zip archives that use path traversal to overwrite important files on
affected systems, either destroying them or replacing them with malicious alternatives.

ER: Zip Sliplsi o B i % IR ZipfF i, XA ERH BR XY MAR LNEZEF, REFHRENEH
HEHATBRBER.

To test if this vulnerability exists, | used a zip slip file provided by Snyk on their Github (see references). |
used my python script to create a HMAC signature again but this time with the zip-slip.zip file. | then used
BurpSuite to intercept the POST request and add the HMAC signature as seen before. Upon successfully
uploading the Zip file, | received the second flag!

NTWRNIRARBEE, BAEH T Snyk7EHGithub EIRHLHZpIE s X (SRS %R R). BfEHpython
AF RS E THMACK 4, {HiX— k2 Hzp-slip.zipX . AR5, FAEHABurpSuitef2# T POSTiEkK, I
AIMTHMACE 4, WZRifis. BRI btEzpsctE, RIRBITHE AR E !

Image for post

4 iE (Closing Remarks)

[really enjoyed solving these challenges and found them very useful for teaching how to exploit vulnerabilities
that can be found in Android applications. | hope HackerOne will continue to release more Android based CTF
challenges in the future and thanks for reading till the end !

RENBERMBoX P, IR e FZ @ F] FHAndroid M R F R HRFEIEE S H. REFE
HackerOne¥s sk < 4k 4: & 77 5 % 2 T Android (I CTFHk R, IFRHE AR ERE.

¥ H : https://medium.com/bugbountywriteup/hacker101-ctf-android-challenge-writeups-f830a382c3ce

hacker

https://medium.com/bugbountywriteup/hacker101-ctf-android-challenge-writeups-f830a382c3ce

	hacker_Hacker101 CTF：Android挑战文章
	免责声明 (Disclaimer)
	H1温控器(简易，2个标志) (H1 Thermostat (Easy, 2 Flags))
	有意锻炼(中等，1个标志) (Intentional Exercise (Moderate, 1 Flag))
	Oauthbreaker(中等，2个标志) (Oauthbreaker (Moderate, 2 Flags))
	移动WebDev(中等，2个标志) (Mobile WebDev (Moderate, 2 Flags))
	结束语 (Closing Remarks)

