ctf%4 Z4if Android CTFIEE

weixin 26722031 o F 2020-07-30 212624 kA7 o 406 ﬁ W 1

LERE: ,D.Mlm

SRR s//medium conybugbo iteup/injuredandroid-ctf-writeup-41dd40165cfa
RRAL

ctfz 4

In this article, | will be walking through the InjuredAndroid CTF. This is a vulnerable Android application with
CTF examples based on bug bounty findings, exploitation concepts, and pure creativity. | have left a link to the
creators Github and the GitHub | used to download the APK in the references below for anyone interested in
trying out the CTF themselves.

FEAXH, BEZDANAInjuredAndroid CTF. XE—HXHEKAdroidM AR, HHETRFAEEK
B, FAMSMAERIEKCTRRE]. TET T 180 812 E Github ML K T HRAPKHIGitHub i 84, XLk
AR T H S5 RR A XA CTRA S IR AN

% 51 7 B (Disclaimer)

This writeup will obviously contain spoilers and | encourage readers to attempt this CTF before looking at this
article. You will learn more by attempting it yourself first and will gain more satisfaction from solving the
challenges yourself.

X ERRHEETERE, REEEERER LA ZAMEHCTF. BHTUEZA—T, NHEIEZS,
FF ISR B PR ik 3R A9 BE 25 B AR R

The author of this CTF has also mentioned that:

ZCTFHEH LR 2

Looking at the source code of the applications in the InjuredAndroid directory, InjuredAndroid FlagWalkthroughs.md file, or
binary source code in the Binaries directory will spoil some if not all of the ctf challenges.

TEInjuredAndroid B H & & N AEFKYERTS, InjuredAndroid FlagWalkthroughs.md3C £ Bk Binaries H 3% A) — 3k #1] Y&
ARADR IR — Lo (B AR 258)tk AR .

I must also point out that challenge seven and eight for the release of the APK | used do not function properly
and do not have flags. | discovered this after starting the writeup and decided to continue on anyways. With all
that said, it’s time to move onto to the writeup!

RIE BRI, SRR BAPKKI KA, SRETMBARIER BT HEARE. RETHESLEEMAI T
R—rl, HFRERSEHITTE. SLER, RNEZHTEET!

By E (Initial Setup)

For this CTF, | will be using a Kali Linux virtual machine as my host device and a Samsung Galaxy S8 emulator
created with Genymotion with the following specs:

XFHCTF, K AKali LinuxEBIRWLEREN T E, I H B Genymotionfll & ff1 Samsung Galaxy S81%)
2, HAAEWT:

https://blog.csdn.net/weixin_26722031
https://so.csdn.net/so/search/s.do?q=python&t=blog&o=vip&s=&l=&f=&viparticle=
https://so.csdn.net/so/search/s.do?q=java&t=blog&o=vip&s=&l=&f=&viparticle=
https://medium.com/bugbountywriteup/injuredandroid-ctf-writeup-41dd40165cfa
https://mp.csdn.net/clock?utm_campaign=marketingcard&utm_source=weixin_26722031&utm_content=108136532

Image for post
To begin the CTF, i connected to my emulator using Android Debug Bridge (ADB) and installed the
“injuredandroid.apk” file.

AT FFIECTF, 3R A#F Android i i # (ADB)E £ 2l {5 H 2% 3£ %22 T injuredandroid.apk” 3 14

Image for post
Looking at my emulator, | can see that the application has been installed successfully.

HEROBENS, TUEIZNARRF ORI ZE.

Image for post
The CTF author also highly recommends decompiling the “injuredandroid.apk”. To accomplish this, | will be
using a tool called Mobile Security Framework (MobSF). MobSF automates the process of decompiling the
APK, reading the manifest file, identifying issues in the source code and in the Manifest file, extracting the
certificate of the application etc. and saves me from having to do this manually. The image below shows the
application has been successfully decompiled by MobSF.

CTFEZ R RFIE W IR iIE" injuredandroid.apk” Ak, FKMEH —ANFRAN B3I LESHELE"(MobSF) T .
MobSFrI L BZHAT A Fid#E: REFAPK, SEUE R, RAVERARIEFE LA E, RENAER
FHEPRE, NMERALFHPITHERE. FTEERTZMARF S MobSFRLIE R 9 % .

Image for post
With the initial setup out of the way, | can now move on to the challenges.

BRI E, RIERT APk .
XSSl & (XSS Test)
Opening the application, | am greeted with the following main activity.

TN AR, BoRERIUT EZE.

Image for post
There appears to be eight flags in total. According to the author:

U BIEN\MRE. RIELEE

XSSTEST is just for fun and to raise awareness on how WebViews can be made vulnerable to XSS.

XSSTESTREATHE, H#km T AMIX T fEWebViews 5 32 BIXSSH i AN iR

Looking at the XSSTEST activity, | am presented with a simple input field where | can submit text.

FEXSSTESTH#EZIF, HEB—ARAKNMATE, WJUERKFRZICAK.

Image for post
| can enter some simple JavaScript that will create and alert box to demonstrate if the vulnerability exists.

AT Ll N\ — 265 B JavaScript, ‘BT AR IIFEESEEY BN ZRFAE B FE.

<script>alert('XSS!!")</script>

Image for post
Entering this input causes an alert box to be generated when the activity used to display our input is loaded.

F\ ML R 3 BUE IR A T B O 3 i A B IRAE

Image for post
The challenge recommends looking at the “DisplayPostXSS” activity to determine what makes this activity
vulnerable. The source code for the “DisplayPostXSS” activity can be seen in the image below.

PhaRE I EE" DisplayPostXSS"¥E3), Ui FBUXEI S ZHHIIRE. TEER T DisplayPostXSS &3]
YRR .

Image for post
Examining the source code, | can see that a new WebView object is created which allows developers to
display web content as part of their activity layout. This activity is vulnerable to XSS because the developer
has enabled JavaScript execution as seen highlighted in red above. This is a nice, simple example of how
developers can leave WebViews vulnerable to XSS.

WA EFERL, RUUFRQET — MK WebViewxt R, &0 R AWK A RERLENMFH ErWebH
. WEHEHRIIXSSHLTE, BEAFRARCEREHJavaScriptiifr, W EHAOAREER. X —AMREF
Hofel o Bl, BT R & W WebView 5 T 52 2 XSSHI B i -

fric—: B3 (Flag One: Login)
In the first challenge with a flag, | am presented with an activity which requires me to enter the flag and login.

FEHARESHE N, RRRERT —IES, ZERBEARSHER.

Image for post
For this challenge, | started by examining the “FlagOneLoginActivity” source code. Examining the source code
revealed that the activity was checking if my input was equal to the flag, which was hardcoded in plaintext.

NT RN IE PR, WE LKA T FlagOneLoginActivity VRIS . KEIFEAIGE KR, ZES)EERERK
AR T ST LA SCABE S IR 6

Image for post
Entering this flag presents me with a new activity congratulating me on finding the flag. Nice and easy [.

WNIAR BB RTER—AFHES), MRERIZRE. BiF, BES.
Wic=: SHKES) (Flag Two: Exported Activity)

Moving on to challenge two, | am presented with an activity which explains that | can bypass the main activity
and call other activities that are exported.

PRI, BB NGRS, RIE SR UL T DA ST E BE B I A A HoAth T S B

Image for post
| started this challenge by looking at the AndroidManifest file for the application to see what activities were
exported. This file acts as a blueprint for the application.

I 2 AR R AndroidManifestS fF LA B S th T WBLeiE Y, RIFIA T3k — kil 00HH 78 4R R AP
.

Image for post
There were three activities exported according to the AndroidManifest file. These activities included the
“MainActivity” which is exported by default due to having am intent filter set, an activity called “b25lActivity” and
an activity called “TestBroadcastReciever”. The “b25|Activity” stands out as an unusual name for an activity.
Using ADB as seen in the image below, | can start this exported activity.

W #EAndroidManifest X4, FH T =2AME3). XEESETE MainActivity”(lH TR E T ZES I8N S
H), —AN4% KN b25IActivity” HIIE B 1 — AN 44 4 TestBroadcastReciever’ f1iEz. “ b25IActivity” & — & s)
AFELKR. WTEFR, HEHADB, W LLEh S HES).

Image for post
This activity presents me with the flag for this challenge.

RXUES) AR T X — PR IR .

Image for post
fr&E=.: %I (Flag Three: Resources)
In this challenge, | am asked to input and submit the flag.

FEMBRA T, FERBEAFRZRE

Image for post
Looking at the source code for the “FlagThreeActivity”, | can see that the developer is again using the
“equals()” method to compare my input with the flag. However, this time my input is being compared to a string
that is retrieved from a resource file.

BE" FlagThreeActivity” FI¥RAAES, TATLAEBIFF RN REXRMH equals() FiEE A SirEd . |
2, XUKERIN S BRSO R R I 757 8 31T H

Image for post
A resource can be referenced in Java by typing “R.string.<string_name>". In this instance, the string name
being referenced is “cmVzb3VyY2VzX3Iv”. Since | used MobSF to decompile the application, | can examine the
strings recovered from the resource files for the application. Searching for the string name
“cmVzb3VyY2VZX3IV”' reveals the flag for this challenge.

Al LLE T B R.string. <string_name>"7EJavat 5| IR H. fEXMIER T, Fi5lHREREBHRA"
cmVzb3WY2VZX3IV'. i T F A FHMobSFR R 4a ¥E N FHAR 77, R R AT AR 2 MSLFH A2 5 B BV SO R L 1Y
FRE., BREFBLER cmVzb3VyY2V2XEIV i BoR iZ Bk KR & .

Image for post
It is also possible to retrieve this flag by decompiling the application using APKTool and examining the
“strings.xml” file.

o A] DLdE i 5 F APKT ool [4 ¥ 82 FH A2 7 HE A A strings.xml” ST SRk 2R o A7 & .
&N . B%2 (Flag Four: Login 2)

This challenge builds on top of challenge one. As seen earlier, the challenge is asking me to login by
submitting the flag.

BEPbAEE T HhM—. WRTATR, BEERERBET R ERE R

Image for post
Looking at the source code for this activity, | can see that it is retrieving data from a different class called
“Decoder” and then comparing it to my input.

BELFESNRENN, RATUEZEIEENA NN NS HRTRREEE, Rk E5RNMAETH
B

Image for post
| can examine this “Decoder” class java file which reveals a string of text that is base64 encoded.

RAT U A XA Decoder’Kjavaxift, Z3XHFER T &idbase644mid) LA F /&

Image for post
Decoding this base64 encoded string using an online tool such as CyberChef gives me the flag for this
challenge.

18 F # tnCyberChefz R I 7E 4 T B X 1%base64 9 i i) 7 7F 5 AT MRAD A TRIR ML T RIX X — PR IR & .
Image for post

ET: SHKT B (Flag Five: Exported Broadcast Receiver)

Looking at the activity for this challenge, there is no text or challenge description provided. Instead, a message
is provided each time | click the link to the challenge. After visiting the challenge’s activity several times, the
flag is broadcasted to us.

FEAT ST ZBRMTES T E, BARESCASRSERER. R, BARAGHRROERN, BIRE—FEL.
LRI RBERIESE, ZirE e BaERAT.

Image for post
Obviously not satisfied with just getting the flag, | decided to look at the source code for this activity in order to
understand how the challenge worked. As the name of this challenge suggests, the application has exported a
broadcast receiver. Broadcast receivers are designed to listen to system wide events called broadcasts (e.g.
network activity, application updates, etc.) and then trigger something if the broadcast message matches the
current parameters inside the Broadcast Receiver. The source code for this challenge’s activity creates a new
intent and then broadcasts this intent.

RRX RS EFAHE, RREEEWIESIHENL, DTSN TERE. BEB ZMAREFCS
T ERRES .)RR B MUK B R AT E E (B0, M2ES), MABFERS), REE
BHE S BEZRSE MK S SRR A R H= g, SRS EAR AR - EE, RE) %
ZRE.

Image for post
A class called “FlagFiveReceiver” handles what the BroadcastReceiver does when receiving an Intent
broadcast.

4 °~“ FlagFiveReceiver” ff1 28 £ 7 &b # Intent) #% i} BroadcastReceiverf#] T.1E

Image for post
The class’s source code starts by declaring a string variable which is the action that triggers the broadcast
receiver. A variable called “wtf” is also declared which is incremented each time the activity is interacted with.
An “if else” block statement is used to print the flag after the “wtf” variable has been incremented to the value
of 2. An interesting class with a random name can be seen which has a function called “decrypt()”. | can
assume that the text being decrypted is the flag and | decided to take a closer look at this class.

ZRIFREE LB N TFRERE, ZRERMA HBREESKEE. BFWT P28 Wil IR, Z%
BREEGREENHITZ LN, £ wif ZERINBME2Z J5, REMH" if else” RiBERRITEIARE . ATEL
BRWHABEHIAROAEBE, ZRAF LN decrypt()" IR H. TATCMRRIEEME R XARRS, FHER
SEAFARE — Tk,

Image for post
Looking at the source code, | can see that the flag was encrypted using the deprecated DES encryption
algorithm. The “decrypt()” function takes in a string parameter and checks if it is base64 encoded and then
proceeds to decrypt the flag. In order to decrypt the flag, the key used for initially encrypting the flag is required
and is seen to be retrieved from a class called “Hide” using the function “getKey()”. The source code for this
class can be seen below.

BERNRG, RATLIE B i%h5 &2 A% R A RIDESIZ ZEm & K.« decrypt() BBER— N FHES
B, HFREHREE Abasebssiid, REREXN ZFERTHE. ATHERS, FEEAMATYHNERSEK
H, FETUERRE getkey() WA BB IR PR R ZEH . HRIEARL DT IR,

Image for post
Looking at the source code in the image above, | can see the “getKey()” function returns a variable called
“encKey” which contains the base64 decoded key. Using an online tool like CyberChef, | can retrieve the
plaintext key used to encrypt the flag.

A LEFREARE, RATUUER" getkey()' REURE T — 82N encKey' IR, HA & basebdf@id %
4. R CyberChefiX AL TR, AT ERA FTINEIRER A XAELH.

Image for post
&N B%3 (Flag Six: Login 3)
As seen with the previous challenges of this type, | am asked to provide the flag in order to login.

MU BTSRRI LA), ZEOR IR PR S MEE R

Image for post
Looking at the source code of the activity, | can see that it is using the “decrypt()” method from the class called
“VGV4dEVUY3J5cHRpb25Ud28” that was used in the last challenge, to decrypt a string and compare it to my
input.

BEENRPERNE, RATLLE 2 IEEMEH E— 8k A2 8" VGVAdEVUY3J5cHRpb25Ud28” f12K
11 decrypt()’ 77 ¥R % 75 B 3B H 5 R N #H1T L.

Image for post
As seen in the image above, the flag is hardcoded but needs to be decrypted. One possible solution to this
challenge is to use a tool called Frida. Frida is a free and open source Dynamic Instrumentation Toolkit. This
tool allows you to inject your own code and to programmatically and interactively inspect and change running
processes. Frida can be used to hook methods and then inject them with your own code.

W EEFR, ZAREREEHEEK, EFEME. MR —Fh w88 R AR R T R MM —> 4 NFridaft T
H. Frida %W ESISHCRTAR. ZTAMETUEANE CRRE, JFUSHENT AN T A EME
BIEAEBTHINE. Fridan fTH##75%%, REMEREE CRARENENT.

In programming, the term hooking covers a range of techniques used to alter or augment the behavior of an OS, app or
other software components by intercepting function calls or messages or events passed between software components.
Code that handles such intercepted function calls, events or messages is called a hook.

ERET, NEWTRE T —RIIEAR, XEEAE ISR A 2 18] 4% 3% 1 B8 20 A B B B R BE el o
OS, MHREFEREMKRAAFRTH. ABERERNREHEH, FFE0H BB T

Frida allows me to insert JavaScript code (hook) inside functions of a running application. | can also use
python to call the hooks and even to interact with the hooks. | have left a link to an excellent guide on how to
setup and use Frida with examples in the references below. This guide provided a useful example (see
references) of how | could hook and call a function with my own parameter. This can be used to hook the
“decrypt()” function and then call it with my own parameter (i.e. the encrypted flag) which will then be
decrypted. The JavaScript code (hook) is provided below:

Fridaft 4 378 IE 78 35 4T B B2 R T8 5 10 B 9 98 A\ JavaScriptfS RS (5F). RIET LAMEHpython A% T, #
ZE5HFHTRE . BRET T MRIFHIEEEER, ZIEERA T DUF R e 5 B A {E F Fridaf) w61 .
AEERET -NMEANRGESHSE TR, EHTNAERB SRS EHTEFMREARS. XA
RHE decrypt()' R, RERARECKHSHE, mERE)AATE, REHHEME. LLITRE T JavaScriptit
5 (8 F):

Image for post
The python script used to load this hook is provided below.

THERAE T ATk T Kpython 4 .

Image for post
I make sure that the Frida server is running on my emulator and then execute my python script to inject the
JavaScript code.

B RFridafi 5 s EE LSS LIE1T, AR5 AT pythonili A LAk A\ JavaScriptftig .

Image for post
My script was loaded successfully and now | need to submit a flag in order to call the decrypt method.

REHACHEIIME, BAERTERZ — MRS 6 R RE 7%,

Image for post
Submitting the word “test” causes the “decrypt()” function to be called, which | then overwrite with my own
input (i.e. encrypted flag). This gives me the flag.

RAZ B test’ 2 FBURAA decrypt()' ik, RERAEBCHBMAED, MERE)EHESR. XETRIET.
fr&-t: SQLite (Flag Seven: SQLite)

Moving on to challenge seven, | found that | was initially unable to access the activity for the challenge.
Looking at the source code for the “MainActivity”, | discovered that challenges one to six must be completed
first before | can attempt challenge seven.

SEEphi b, WMRIARBYILESIMBERKES . BEEF" MainActivity” FITRAIE, BRI THE —
EFENNEL R R

Image for post
An “if” statement is used to check the boolean value of six variables located in the “FlagsOverview” class. If all
six of these boolean values are true, then the activity for challenge seven can be started. | realized that each
time | closed the application, these boolean variables would be reset and | would have to enter the flags again
before | could do challenge seven.

“iFIER A TR EN T FlagsOverview” K BN N2 B A /RE. WRFTE /N /REE Atrue, WA LR
BETHIES) . REIRE], BRKHANARERFYN, XEM/REEMGHEE, FHRDIE AR TS kL
4

Image for post
Since | am lazy and | don’'t want to enter all six flags each time | closed the application, | created a Frida script
that sets all flags to true .

HTFRIBW, HEGRKHANARTFE A EMARE A MRE, FHEROET —ANFridafi A&, KrEmaER
& Mtrue.

Image for post
Using the same python loader script as before in challenge six, | injected the application with my JavaScript
code and changed the values of the variables.

1 F 5Bk &R 7S # AH [F] I python loaderfii s, IR EAN T JavaScriptfRi% I ik T & & HI1E

Image for post
The output above shows that the values of the variables have been changed. Looking at the flags overview
activity, | can also see the color of the buttons have changed to green. | can now access the activity for
challenge seven.

EEfEEERTENECER. BEEREMRES, RETURBIZANFECZASE. RIER LI
PR RESD

Image for post
The activity for challenge seven does not contain any challenge description or text. Looking at the source code
for the activity, | can see that a class called “DatabaseSchema” is used to create an SQLite database file.

PRRCRES AR S EAPRE I ECCR . B ESKENN, FATUEE—4 44" DatabaseSchema” 38
FF 612 SQLite H ¥ 2 U1 .

Image for post
Further down in the source code, the database file is retrieved and some values are entered into the database.

FEIRAIBHETE, KRB E, R — S E A SR

Image for post
It is also important to note that the database file is deleted when the challenge seven activity is destroyed.

FIEENREER, JRECENEBIRN, Bl SR Ml ER .

Image for post
Looking at the “DatabaseSchema” class source code, | can see that the name of the SQLite database file is
called “Thisisatest.db”.

25 F“ DatabaseSchema” 28R/, 1] LAE RISQLite B8 FE U8 L R PR AN Thisisatest.db”.

Image for post
The file can be found in the applications data directory (N.B. Make sure the challenge seven activity is open or
the file won’t be created).

T CAZE N AR P 208 B SR P R B O (R R, FRRITIT b EES), SRS,

Image for post
Using ADB, | can pull the file from it’s location on the emulator and view it using a tool, such as sqlitebrowser.

{6 FIADB, AT LB F Sk B AR fF, (T Wsqlitebrowser 2 K0 T G 17255

Image for post
It appears the database has two entries which include a hash and what appears to be a URL of some kind.
Using an online tool for cracking MD5 hashes, | can recover the hashed text as seen below.

ERBBEFWAN%E, HPEFEBFINERREEMURLINE. SHAELTABMEMDSRS, RUMKE
HBISCA, IR ETR.

Image for post
For the URL, | recognized that it had been encrypted using ROT 13, since only the letters had been rotated and
not the special characters. Using CyberChef, | was able to recover the URL.

XFFURL, EEIREIECLMMAROTISHAT TINE, FARERE T ¥8, MARE TRKRTFAF. A Cyber
Chef, FAEBKEURL.

Image for post

Visiting this URL gave me a “note not found error”.

Vi 1 BEURLES B — M 3RA BB R KR

Image for post
This is unfortunately where the challenge ends (1. Referring to the walkthrough notes available on the
GitHub repository revealed that the URL has now changed. There is also no where to submit the URL and
hashed text. For the purposes of this challenge, I'll just have to settle for the cracked hash (i.e. “hunter2”)
being the flag.

AERR, XRIRERFMTT. BERGtHUbTF M E LREAZELE, KIURLIAECER. HEHRZURL
MISH SR E . TR B #, RATEBRBRKIE A (BI" hunter2”)fE atn 5 87 i &

¥r&/\: AWS (Flag Eight: AWS)

The challenge description explains that there are AWS credentials hidden in the application somewhere but
unfortunately none were found. After sometime looking for these credentials, | referred to the walkthrough
notes on the GitHub repository. | discovered that the APK release | am using does not possess these
credentials and so | cannot solve this challenge.

PRAGE A RRE UL, SRR PR AL R T AWSHEIE, EAZMRBEARE. EIRTRIBRIEZ)E, KSHT
GitHubfF i FE TR R . R IMBFEH WAPKIRAARS R & iX R4, B RTEM R .

4 iE (Closing Remarks)

This was a fun Android themed CTF that | really enjoyed completing. Despite the last two challenges not being
solvable, | believe this CTF was able to showcase some simple security issues that can be present in Android
applications and can be a fun way for beginners to get started in Android application security. Big thanks to the
author of the CTF and thanks for reading to the end 1!

RRBIARE BV R A BRANdroid EBCTF. RETEMEHREEHAhE, ERMECTFREER— S H
Rz et A, X] R HOLEEAndroid M AR P P, FF BN FAD2 8 R, KR — M @77 R
fEFHAndroid M fEFF & &, FHEBRMCTFRES, HREHE R EE Xthe!

#1% 8 https:/medium.com/bugbountywriteup/injuredandroid-ctf-writeup-41dd40165cfa

ctfzz 4

https://medium.com/bugbountywriteup/injuredandroid-ctf-writeup-41dd40165cfa

	ctf安全_受伤的Android CTF撰写
	免责声明 (Disclaimer)
	最初设定 (Initial Setup)
	XSS测试 (XSS Test)
	标记一：登录 (Flag One: Login)
	标记二：导出的活动 (Flag Two: Exported Activity)
	标志三：资源 (Flag Three: Resources)
	标志四：登录2 (Flag Four: Login 2)
	标志五：导出的广播接收器 (Flag Five: Exported Broadcast Receiver)
	标志六：登录3 (Flag Six: Login 3)
	标志七：SQLite (Flag Seven: SQLite)
	标志八：AWS (Flag Eight: AWS)
	结束语 (Closing Remarks)

