cookiesiE i}

zhenl2321 o F 2018-07-18 16:51:47 KA o 402 ﬁ 5
HREE: java fRIF

80 B30 0 m;ﬂ
U EZE

L{R1F
319 WX E 3T
TSR
HTTP cookies, i## X#k{E"cookies", DA TRKME, HEMIBBEAEWTFURSKIEBE. HENELR
FETHZIRX, A Ncookies)G TREFERE, BUERAFIEE RN TR . A B T cookiesit
S —HHERED. REFAEERLEEE, cookiesiIHEWebIF R P EMILEZKIEM, UETWMR
cookiefE A AT & A dh HBLAIIE O T &, BT L ERKIWebMN KRB ZETH 4.

cookiesiJ &2 ¥

B HWebHF K HE G R KA B2 —RNAEERE. fi5z, REBHEEIMNEMERNERELGRE T

A — A8 . RIS B A R AR E SR B T 36 A —AMoken, 3 HAE T —KiER P ix Mokenik Bl (RS

) o IXEE T EEformF iR N — /MU Etoken I RGBSR Bk, EETEURLKIqureyZFF & &8 i%token. XFFH
INERRR AT THIEH BRS HEs.

Lou Montulli, AR i 2 W Bl R — AN & 5, A AFE 199446 % “magic cookies” A% & B F 3] 7 webiB il 4 .
fih = B g R B Reweb)GV, DRAE BT B Y uh HAR B 2 o Atk B B 5 10 B SRS 3Rt T — Becookies T
1B IR B A BZSCREERFC2109F #E #iTtk. GX 2P A W K28 LM cookiesI S K IE) , FHFHRLZELHE
B T REF2965.Montullif &t #13% F 7 5% F-cookiesHISE B L 7. 53 U B3 7E & 1 38 — ANRRAS sl FF 46 2 %
cookies, F H 24# AT web % 28 #8 57 Krcookies.

cookieZ 4 ?

HEKH, —Acookiet & EEH - ENLN A — /DB CAE . Cookies4i XX AR, ENIAE
BT PATRIG . —NWebT TH B AR 5525 5 2 3 38 R X L5 BAEME 9 HE T — RIIMNTE 2 5 M E/ME
R ERR S BRI B RS 38 . WebfR%52% 2 J5 7T DRI A X L5 BRF R P . 2HFEGFH m0E8E 2F
PREINESS BT 5 R ¥ B —~cookie, 2 J5 RE XA cookiefFEH H&E, VREUAT LA E i B X A v i i B
B#4r. BIR, cookieR2EETHIE, MEAHMS HAEFE.

£l & cookie

BiEHT TP/ Set-CookietH B3k, Webfk %25 1] LLTs & f#fif —~cookie. Set-CookieyH & A% = a0 T M =
T (PFRESHRIEEDERZAIER)D

1 Set-Cookie:value [;expires=date][;domain=domain][;path=path][;secure]

https://blog.csdn.net/u010563350
https://blog.csdn.net/u010563350/category_7573842.html
https://blog.csdn.net/u010563350/category_9707477.html
https://blog.csdn.net/u010563350/category_7573842.html
https://blog.csdn.net/u010563350/category_9707477.html
http://en.wikipedia.org/wiki/Lou_Montulli
http://en.wikipedia.org/wiki/Lou_Montulli
http://en.wikipedia.org/wiki/Magic_cookie
http://curl.haxx.se/rfc/cookie_spec.html
http://tools.ietf.org/html/rfc2109
http://tools.ietf.org/html/rfc2965
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=5774670&KC=&FT=E

HESLIE—E 4, valuedhsyr, @R —Pname=valuelt R FZHHE . FL b, BIEFMIERXENIZE
FEI#%R, (HR2NEIESTcookieK A H AN SH IR ARE . Lhrl, /RTEE - NMEEESHFEREIH;
BERESEERE. RN, @S REUname=valueli X GEAZHMED R X)) kige
cookieH1H

Y —AcookiefEfE, FHHATEEM R HIE, ZcookieESERE FRINEBMER P RILEERS R,
cookie I {E # 7 fis 7E % N CookieFIHTTPYE B3k, 3+ H RE& T cookielI{E, H'EMEIMEITLH L. Fl
.

1 Cookie : value

il id Set-Cookieds & K T R & M A T M W8, — BB R EEEASBMS B EHBE . cookiefE
5Set-Cookiet 1 E HIE R B E— K FRFH; W TXRYEEASHEEE P RBITEEERE. mRERER
HRHH L~ cookies, A BN D SMERSTIF, Hln:

1 Cookie:value1 ; value2 ; name1=value1

JiR 55 4% v HE 4218 4R At cookies K Th &k, JF Hilid 412 77 3K X cookies I fE .
cookie%ifi5 (cookie encoding)

%t F cookie M AT 4ifil — B ERFF7E — Le R =R . 3 H BV s R cookie B A i URLSR TS, {HR2IXH LR —
AMBR, RET LUStcookieME#HTURLGRID . JR G SCRE R (U =R R BN 2/ D AT mIS: 25, &
5, M. HEHRET AR HURLEG, ERIARUI. RFCEAEREEMAIFG. R, JLEFEKR
S 7 AR cookie B #EAT T — 2 FI MURLGRAS . XF Fname=valuefi#& X, namefivalueid % #§ B 17 4%
3t HARST &5 =" 1T gD iRk .

FHWEH (The expires option)

KB cookieff J& T BN ETUEL KL 5 R SA% 40 81, I BB IE AL HE % cookie] B B 1% 4 & 3% B Rk 5528 -
FE— LT Zexpires, HIERE T cookief By A< F# K1 B IR 5250w B, K% cookie 1] B8 2 4 3 Vi 2% M #5
IR IR X B R R — A% R 8 Wdy,DD-Mon--YYYY HH:MM:SS GMT ii{E, #iin:

1 Set-Cookie:name=Nicholas;expires=Sat, 02 May 2009 23:38:25 GMT

TEW H expiresiE R, cookiel)H PR T —HI2iEH . NWERKRARKX —RSTERNLER, Frlaid
cookie R FATE T M AR FFIT A RPREZ T . KB A4 UIREF 2] — 1 webliH i & # & 2| —4~checkbox,
WHRR B EBRFEEIRNERER: WRREFERNE, 2 — A expiresi <4t in 2 % ficookied .
RexpiresiE Wi B 7 — it L BT [E] &, B4 X Ncookie 24k 3z B B

domaini%£3i (The domain option)

T—AMETZdomain, $R7~cookiet B K % B ME MR E R e . BRIAE LT, domaina i i B N A 1%
cookie] T T Fr7E (38,48 . 45l tn A3 o i) cookie 1 domain & £ [2R I\ B Fwww.nczonline.com. domainidk sk
FRY R cookielE R E RIEBHIHE . Filun:

1 Set-Cookie:name=Nicholas;domain=nczonline.net

BREWYahoo! XFEHIRE W55 #R2F ¥F %2 Piname.yahoo.com(f
m: my.yahoo.com,finance.yahoo.com, %§4§)9#& 2 H)uh . B E — N cookie] LA & &) 8 i3 K H domainizk
T ¥ B Jyahoo.comify &% B fr A X euh mi . WY SE X domain{E 51 RTE KX EMEHAL, M— 1R
b (BDANFZRFER B FFLEEED , 3 BAEILAS S K% — A Cookield B3k .

domain#t B) 2 4 R & 1% Set-CookiedH Bk i 4 . i, I google.comKi%E—cookie, FAX
ANPE A R . A H domainid 5 R 2 i B i Z B8 B AT

Pathit i (The path option)

F—ANEHIAT R K% CookielH B2k 77 X2 8 Epathit . Sdomainik WiAHE =2, pathfg#] THEK
CookieiH Bk Z B b AAE T R B IR P A7 7E — MURLER A2 . XA HUBOR I8 1 K path & 18 518 R FTURLM LI 46
B B TE T . IR AFILES, Mk i&Cookiedd B3k, #ilm:

1 Set-Cookie:name=Nicholas;path=/blog

XA FH, pathi Ti{E & 5/blog,/blogrool&EHILAS; 4E{A Lh/blogFF sk FIIE TR & AR . BEEREM
= R A fEdomainie ii% e e e 2 J5 4 & Stpath/@ k1T EL i . path)& 1 i BRI B 2 % 1% Set-CookiedH B 3k A it
RZIURLA fpath#B 43

secureit il (The secure option)

BJE— /Mg 2&secure. AMEHEIET, ZiEW A& — MricH HEBEHERE. —/secure cookie R EH
BERZEITSSLMHTTPSEI&ER, A& KIXFIRE . XFhcookiel A A E R EE R EKNME I BT R E
FA B A DA Al Se A T A .

1 Set-Cookie:name=Nicholas;secure

e, ML B BURRE B4 A RLZEcookiesHH i B fE 5, KA cookies I BEA LI AR 2 TR AR AN 241
BB T, fFEHTTPSHE#E b 4&%5 i cookiesER £ 4% H Zh ¥ N _Esecurei& i .

cookie 4y M4y 1 (cookie maintenance and lifecycle)

EBHE KR AT DAE B —Fcookie P #E %, I HIX g AT DA UMEM IR /772, Bl

1 Set-Cookie:name=Nicholas; domain=nczonline.net; path=/blog

iX/~cookef MUAMHRIRSF: cookiefliname, domain, path, securetric. ZAEZEK: AR X ~cookiek]
, FERES A EA MR cookie name,domain,pathi]Set-CookieiH B k. #in:

1 Set-Cooke:name=Greg; domain=nczonline.net; path=/blog

XK PL— A7 (B R 78 o5 R R cookiefiI{E . AR, X R R X EET K E - M ESEE—ANEEARRM
cookie, l4n:

1 Set-Cookie:name=Nicholas; domain=nczonline.net; path=/

EIREIXANMEERE, SFERANFERHAF“name” KA [F fcookie. a5 4R 1 I3 fEwww.nczonline.net/blog
THR—ANE, PATRHEE RS k.

1 Cookie: name=Greg;name=Nicholas

http://www.yahoo.com/
http://www.yahoo.com/
http://my.yahoo.com/
http://finance.yahoo.com/
http://www.google.com/

XA B L FE T B4 8" name” fjcookie, pathE k¥ 4 W cookie#k FEHT . domain-pathis ¥ 41 M
cookie /T B EERT . RiFIAEWW.nczonline.net/blog T 3F H. &% T B —4~cookie, HZEWT:

1 Set-Cookie:name=Mike

AR 238 [)9 B SR BLAE AR A«

1 Cookie: name=Mike;name=Greg;name=Nicholas

BT A& “Mike” fcookieft i T34 (www.nczonline.net) £ RHdomainféif HLA4 4 (/blog) 1ERH:
pathff, N'eEH BEFAcookie® fni#4.

%% B (using expiration dates)

Zcookiefl BT A E T R B M, XA KR H M SKEL T Llname-domain-path-secure A#7 R ffjcookie.
A —/~cookieHI R B, IRULATREFRFERAE. LB — N cookieHIERT, RALBRABERMEM,
B5 A B A & cookiebr RS B A BB 4. Bilan:

1 Set-Cookie:name=Mike;expires=Sat,03 May 2025 17:44:22 GMT

AL B E T cookieI R H M, BT T REABE KR cookieHER, RAFTEMAER LT

1 Set-Cookie:name=Matt

fEcookie b 1R H A B A 52, F ~cookieMtnilfF MR . SLhrt, RAERF I HI S cookieft)k
MEH, BUHRSHBEASHE, XEKREER—A2ER, —2ifcookie] AR B — M REA ft.cookie (—
AN UEZANERFERD , RZWAF. RTERH—AREAfcookieZ F—A><ifcookie, RUZMIFRIXA
e Afbcookie, xR E R B BRI H B v EIEA N H 2 5 HAIE—NF & K &ifcookie st iT BASZH .

BB R H W2 DA AR I2 4T 1 B _E) R SRR R D B EBEAT X SE R . A AR MR R BHIEIX
ARG E] R B ARG AR HIRS AR 22, BT B 2 AR 25 2% e TR A0 S 28 i Ak R 8 R AFAE 2 R i X B B S B
R

cookieH & (automatic cookie removal)

cookiez= 7 H JE 4% B SRR, &8 AT LA R R

o 2ificooke(Session cookie)fELIEL AT (WK AR <Mk
o F: A fkcookie (Persistent cookie) 7& 2k 52k B BT 24 Mk

o WM KA H FcookieRHI ik, B4 cookiese Ml bk LA N Fi EcookiesBI = H] . #MEHI H I —FR
Fcookies restrictions i %

AR X 2 5 SRSk, CookieBHEB+HEE, F AXMBRERLEIRK.
CookiefR #l4%14: (Cookie restrictions)

fEcookies L FTE T B2 FR#IZ&ME, SRFH1Ecookiellf F H- AR 3 W AS A AR 45 28 6o 2 — S A TH BY M . 75 B
cookiesHI PR #l| %&14: cookiesf) J& t: Flcookies s K/, R 46 B R TE H R 2 BN T A id 204 cookies, F
BRI S AR AR IS Y, HEEIETHEANEIE B IRA . BRI —IKER S, MAIEIE7H Y
JncookiesHIBR #2504, 5 h[FE OperalR & cookies/~# 430.SafariflChromext 54484 T Kcookies %k
B R

http://www.nczonline.net/
http://www.nczonline.net/blog/2008/05/17/browser-cookie-restrictions/
http://blogs.msdn.com/ie/archive/2007/08/29/update-to-internet-explorer-s-cookie-jar.aspx
http://blogs.msdn.com/ie/archive/2007/08/29/update-to-internet-explorer-s-cookie-jar.aspx

R 16 IR 55 2% 1) BT A cookies I B KB (ZF1A) TIIRERF FIEMER g K. 4KB. B # I %R &K
cookiesHf & &I I AR RIZZ RS 28,

Subcookies

% FcookieHI BB R, FF &% 1% H Fsubcookies M i k1 incookies i & . Subcookies g — 77 i
#E—/~cookieffivalueH f)—tename-valueX}, 3+ H i@ % 5L T4l

1 name=a=b&c=d&e=f&g=h

X Fh 5 R Jo VF7E B> cookie AR FE L N name-valueXt, A<t vl % 28 cookie) B & PR #1l . it X Fh 5 2
B cookiesI RS M, 752 H e UENTH AORIRBUX L{E, #H LT 5 cookiesIHg N E M B, RE 2
HRHE 4R E T 45 X Fisubcookies I 77tk . F4w B I YUI Cookie utility, 3Z#%7Ejavascriptr i/ & subcookies

Javascript# fjcookie (cookie In Javascript)

@it Javascript# fidocument.cookie/g 4, RETLAGIZEE, iy FfHlERcookies. 4E A& cookiesh %8 %
[F Set-Cookieid B3k, Ti7EiEEcookief % [FF Cookield B k. 7E8IE—4 cookielt, k5 E{# FHFl1Set-
Cookie i #% A [F] 1 ZR/F &

1 document.cookie="name=Nicholas;domain=nczonline.net;path=/";

¢ B document.cookie & 14 1B /A~ 2 Ml B 776 75 T H B BT A cookies. & R i B A @ s i =/ & 18
ERIcookies. TRKIE—AMERBIRS 20, XEcookies (ilitdocument.cookiei B i) £ F1H & il i Set-
CookieiH Bk #% B icookies—FE R IXE RS- 8% . BT A X EcookiesH- & A 4 B I A [E) 2 &b .

4§ F] Javascripti Bt cookie &R, R Mdocument.cookied iz BXEI F] . & Bl i) 745 5 5 Cookiell B 3k
F R F R ERRAER, FTlE A cookies& a5 PR EHE. Hln:

1 name1=Greg; name2=Nicholas

BT, RFEFTHETXA cookie 5 RIZAE L i cookieH#E . X411 BF V£ ik F F Javascriptk
f#trcookiefI % kl, AIERAF, Professional Javascript, FrUAEXRMAB R . B HCOELER
JavascriptEE#/Ecookie& B fdj #., #nYUI Cookie utility J7EJavascriptH 4k ¥ cookiesifi A B F T & Hr & ix g

i3 V5 17 document.cookiei& 5] i) cookies s 1 & 7] i %5 2% i cookies — ¢ [U7 M AL M . Z i@ it Javascriptii
iilcookies, %W IH Mcookiesh AEM R, HHHRKpath, HHRFKZEHH .

& : —HcookiesifiitJavascriptit B J5E A e iR IUE FIIE T, Fr MR A 2 JiE
domain, path, expirationH #igksecuretzit .

HTTP-Only cookies

W HIIES SP17EcookiesH 5l N T —AN#i K% : HTTP-only cookies.HTTP-Only® &5) & B2 5 2 % %
iZcookie4s A b 1% i@ it Javascriptftidocument.cookie /@ i i« BETHZAFIE R AE IR Bt — AN 2 & HE R H Bh FH 1@
it Javascript/x it2) 25 il i A B i (XSS) B3 Bl cookie AT H (REEF —RERH TR ZENE, ARkE g
) . £ KFirefox2.0.0.5+, Opera9.5+,Chrome#f > #HTTP-Only cookies. 3.2i%4 i Safarifi A~z #

EHE—AHTTP-Only cookie, R Z Ak icookies % ii—ANHT TP-Onlytric BN] :

1 Set-Cookie: name=Nicholas; HttpOnly

http://developer.yahoo.com/yui/cookie/
http://www.amazon.com/gp/product/047022780X?ie=UTF8&tag=nczonline-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=047022780X
http://developer.yahoo.com/yui/cookie/

—H#®EXMrid, #iddocumen.coookielll A gEF-1j i) %cookie. |EFEE B iE— 3 A vriid
XMLHttpRequestfigetAllResponseHeaders() sk getResponseHeader() 75 i 5 il cookie, SR H & J % 8% M o 4
AT RN, FirefoxfE3.0.6H 125 T iZIFIH, AMIIBEAFZ N N IEHGFE, complete browser support listF1
Tixek,

RARE IR T JavaScriptiz BHT TP-only cookies, FENARA #8 i@ it JavaScriptiz BUiX Hcookies, X & 1EH
ZHERE.

M4 (conclusion)

T R F Fcookies, THIHAEWEZE T AMFHANARA. XF—HEIE T+ 2 FEaE/IH &Y L
RIFRFEE M ZE S HEAR R, XRGEZATENNE. A8 RERHE T~ NERRLZAIE KT 3
cookiesfIEAIE T, ELRWMT, MAR—INEEHSE, T4 KMwebX i Cookiests IH L% JEH HEKIE
H, B A E Hcookiese FHE MR &N &, NEMEENHAFPARIZERE. BREEXBEFMEE
% A — 6 56 T cookies i A A] LUK 22 o

B 1E J T H -

ZLE 200K, FPENROCEHE —REBENE, HEXFEF K TFcookiest PHE T2 1#41, ik
fE% S cookieshf, LB E, WEHEBRR L, FANEEANECHSHIE, Bl RECREAF L. P
BONVEN PR T % Fcookies 2R, FTEMIEI A&, LK cookieskiA & i@ HEMEABHEKIEM, LKA
KW Ba 28X T cookies ¥ SEIIE LLANE BB, IEWEHE FrRE AR, cookiestEA—Ti+ JLFRT QIR A —EIR
HESHEAR, BEESANFREBEITMMNFEYR AR TFcookiest) —BEAE BEMEH, FXPREMRIEEE
JFBXAE, HAFER, —SiEAFENHRAER, BIECHEEE, MRS — M.

XF1E#H: Nicholas C. Zakas, RiXwTHG LIEW, ¥ 7Eyahoo LYEIEHAE, HIEERIHARBARMS, MHK
E1EH (javascript MEAREFEIT) B—AREAENmEAREE.

R R

HTTP cookies, most often just called “cookies,” have been around for a while but are still not very well
understood. The first problem is a lot of misconceptions, ranging from cookies as spyware or viruses to just
plain ignorance over how they work. The second problem is a lack of consistent interfaces to work with
cookies. Despite all of the issues surrounding them, cookies are such an important part of web development
that, should they disappear without a replacement, many of our favorite web applications would be rendered
useless.

Origin of cookies

One of the biggest issues in the early days of the web was how to manage state. In short, the server had no
way of knowing if two requests came from the same browser. The easiest approach, at the time, was to insert
some token into the page when it was requested and get that token passed back with the next request. This
required either using a form with a hidden field containing the token or to pass the token as part of the URL’s
query string. Both solutions were intensely manual operations and prone to errors.

http://www.mozilla.org/security/announce/2009/mfsa2009-05.html
http://manicode.blogspot.com/2009/01/browser-httponly-support-update.html
https://www.owasp.org/index.php/HTTPOnly#Browsers_Supporting_HTTPOnly
http://www.nczonline.net/about/

Lou Montulli, an employee of Netscape Communications at the time, is credited with applying the concept of
“magic cookies” to web communication in 1994. The problem he was attempting to solve was that of the web’s
first shopping cart, now a mainstay on all shopping sites. His original specification provides basic information
about how cookies work, which was formalized in RFC 2109 (the reference for most browser implementations)
and eventually evolved into RFC 2965. Montulli would also be granted a United States patent for cookies.
Netscape Navigator supported cookies since its first version, and cookies are now supported by all web
browsers.

What is a cookie?

Quite simply, a cookie is a small text file that is stored by a browser on the user’'s machine. Cookies are plain
text; they contain no executable code. A web page or server instructs a browser to store this information and
then send it back with each subsequent request based on a set of rules. Web servers can then use this
information to identify individual users. Most sites requiring a login will typically set a cookie once your
credentials have been verified, and you are then free to navigate to all parts of the site so long as that cookie
is present and validated. Once again, the cookie just contains data and isn’t harmful in and of itself.

Cooke creation

A web server specifies a cookie to be stored by sending an HTTP header called set-Cookie. The format of
the set-Cookie header is a string as follows (parts in square brackets are optional):

Set-Cookie: value[; expires=date][; domain=domain][; path=path][; secur

The first part of the header, the value, is typically a string in the format name=value. Indeed, the original
specification indicates that this is the format to use but browsers do no such validation on cookie values. You
can, in fact, specify a string without an equals sign and it will be stored just the same. Still, the most common
usage is to specify a cookie value as name=value (and most interfaces support this exclusively).

When a cookie is present, and the optional rules allow, the cookie value is sent to the server with each
subsequent request. The cookie value is stored in an HTTP header called cookie and contains just the
cookie value without any of the other options. Such as:

Cookie: value

The options specified with set-Cookie are for the browser’s use only and aren’t retrievable once they have
been set. The cookie value is the exact same string that was specified with set-Cookie; there is no further
interpretation or encoding of the value. If there are multiple cookies for the given request, then they are
separated by a semicolon and space, such as:

Cookie: valuel; value2; namel=valuel

Server-side frameworks typically provide functionality to parse cookies and make their values available
programmatically.

Cookie encoding

http://en.wikipedia.org/wiki/Lou_Montulli
http://en.wikipedia.org/wiki/Magic_cookie
http://curl.haxx.se/rfc/cookie_spec.html
http://tools.ietf.org/html/rfc2109
http://tools.ietf.org/html/rfc2965
http://v3.espacenet.com/publicationDetails/biblio?CC=US&NR=5774670&KC=&FT=E

There is some confusion over encoding of a cookie value. The commonly held belief is that cookie values must
be URL-encoded, but this is a fallacy even though it is the de facto implementation. The original specification
indicates that only three types of characters must be encoded: semicolon, comma, and white space. The
specification indicates that URL encoding may be used but stops short of requiring it. The RFC makes no
mention of encoding whatsoever. Still, almost all implementations perform some sort of URL encoding on
cookie values. In the case of name=value formats, the name and value are typically encoded separately while
the equals sign is left as is.

The expires option

Each of the options after the cookie value are separated by a semicolon and space and each specifies rules
about when the cookie should be sent back to the server. The first option is expi res, which indicates when
the cookie should no longer be sent to the server and therefore may be deleted by the browser. The value for
this option is a date in the format wdy, DD-Mon-YYYY HH:MM:SS GMT such as:

Set-Cookie: name=Nicholas; expires=Sat, 02 May 2009 23:38:25 GMT

Without the expires option, a cookie has a lifespan of a single session. A session is defined as finished
when the browser is shut down, so session cookies exist only while the browser remains open. This is why
you'll often see a checkbox when signing into a web application asking if you would like your login information
to be saved: if you select yes, then an expires option is attached to the login cookie. If the expires option
is set to a date that appears in the past, then the cookie is immediately deleted.

The domain option

The next option is domain, which indicates the domain(s) for which the cookie should be sent. By

default, domain is set to the host name of the page setting the cookie, so the cookie value is sent whenever a
request is made to the same host name.A For example, the default domain for a cookie set on this site would
be www.nczonline.net. The domain option is used to widen the number of domains for which the cookie
value will be sent. Sample:

Set-Cookie: name=Nicholas; domain=nczonline.net

Consider the case of a large network such as Yahoo! that has many sites in the form of name.yahoo.com
(e.g., my.yahoo.com, finance.yahoo.com, etc.). A single cookie value can be set for all of these sites by setting
thedomain option to simply yahoo. com. The browser performs a tail comparison of this value and the host
name to which a request is sent (meaning it starts the comparison from the end of the string) and sends the
corresponding Cookie header when there’s a match.

The value set for the doma in option must be part of the host name that is sending the set-Cookie header. |
couldn’t, for example, set a cookie on google.com because that would introduce a security issue.
Invaliddoma in options are simply ignored.

The path option

Another way to control when the cookie header will be sent is to specify the path option. Similar to the
domain option, path indicates a URL path that must exist in the requested resource before sending

the cookieheader. This comparison is done by comparing the option value character-by-character against the
start of the request URL. If the characters match, then the cookie header is sent. Sample:

http://www.yahoo.com/
http://my.yahoo.com/
http://finance.yahoo.com/
http://www.google.com/

Set-Cookie: name=Nicholas; path=/blog

In this example, the path option would match /blog, /blogroll, etc.; anything that begins with /blog is
valid. Note that this comparison is only done once the domain option has been verified. The default value for
thepath option is the path of the URL that sent the set-Cookie header.

The secure option

The last option is secure. Unlike the other options, this is just a flag and has no additional value specified. A
secure cookie will only be sent to the server when a request is made using SSL and the HTTPS protocol. The
idea that the contents of the cookie are of high value and could be potentially damaging to transmit as clear
text. Sample:

Set-Cookie: name=Nicholas; secure

In reality, confidential or sensitive information should never be stored or transmitted in cookies as the entire
mechanism is inherently insecure. By default, cookies set over an HTTPS connection are automatically set to
be secure.

Cookie maintenance and lifecycle

Any number of options can be specified for a single cookie, and those options may appear in any order. For
example:

Set-Cookie: name=Nicholas; domain=nczonline.net; path=/blog

This cookie has four identifying characteristics: the cookie name, the domain, the path, and the secure flag.
In order to change the value of this cookie in the future, another set-Cookie header must be sent using the
same cookie name, domain, and path. For example:

Set-Cookie: name=Greg; domain=nczonline.net; path=/blog

This overwrites the original cookie’s value with a new one. However, changing even one of these options
creates a completely different cookie, such as:

Set-Cookie: name=Nicholas; domain=nczonline.net; path=/

After returning this header, there are now two cookies with a name of “name”. If you were to access a page
atwww.nczonline.net/blog, the following header would be included in the request:

Cookie: name=Greg; name=Nicholas

There are two cookies in this header named “name”, with the more specific path being returned first. The
cookie string is always returned in order from most specific domain-path-secure tuple to least specific.
Suppose 'mat www.nczonline.net/blog and set another cookie with default settings:

Set-Cookie: name=Mike

The returned header now becomes:

Cookie: name=Mike; name=Greg; name=Nicholas

Since the cookie with the value “Mike” uses the hostname (www.nczonline.net) for its domain and the full
path (/blog) as its path, it is more specific than the two others.

Using expiration dates

When a cookie is created with an expiration date, that expiration date relates to the cookie identified by
name-domain-path-secure. In order to change the expiration date of a cookie, you must specify the exact
same tuple. When changing a cookie’s value, you need not set the expiration date each time because it’s not
part of the identifying information. Example:

Set-Cookie: name=Mike; expires=Sat, 03 May 2025 17:44:22 GMT

The expiration date of the cookie has now been set, so the next time | want to change the value of the cookie, |
can just use its name:

Set-Cookie: name=Matt

The expiration date on this cookie hasn’t changed, since the identifying characteristics of the cookie are the
same. In fact, the expiration date won’t change until you manually change it again. That means a session
cookie can become a persistent cookie (one that lasts multiple sessions) within the same session but the
opposite isn’t true. In order to change a persistent cookie to a session cookie, you must delete the persistent
cookie by setting its expiration date to a time in the past and then create a session cookie with the same name.

Keep in mind that the expiration date is checked against the system time on the computer that is running the
browser. There is no way to verify that the system time is in sync with the server time and so errors may occur
when there is a discrepancy between the system time and the server time.

Automatic cookie removal

There are a few reasons why a cookie might be automatically removed by the browser:

e Session cookies are removed when the session is over (browser is closed).
¢ Persistent cookies are removed when the expiration date and time have been reached.
¢ [fthe browser’s cookie limit is reached, then cookies will be removed to make room for the most recently created cookie.

For more details, see my post on cookie restrictions.

Cookie management is important to avoid any of these automatic removal cases when they are unintended.

Cookie restrictions

http://www.nczonline.net/blog/2008/05/17/browser-cookie-restrictions/

There are a number of restrictions placed on cookies in order to prevent abuse and protect both the browser
and the server from detrimental effects. There are two types of restrictions: number of cookies and total cookie
size. The original specification placed a limit of 20 cookies per domain, which was followed by early browsers
and continued up through Internet Explorer 7. During one of Microsoft’s updates, they increased the cookie
limit in IE 7 to 50 cookies. |IE 8 has a maximum of 50 cookies per domain as well. Firefox also has a limit of 50
cookies while Opera has a limit of 30 cookies. Safari and Chrome have no limit on the number of cookies per
domain.

The maximum size for all cookies sent to the server has remained the same since the original cookie
specification: 4 KB. Anything over that limit is truncated and won’t be sent to the server.

Subcookies

Due to the cookie number limit, developers have come up with the idea of subcookies to increase the amount
of storage available to them. Subcookies are name-value pairs stored within a cookie value and typically have
a format similar to the following:

name=a=b&c=d&e=f&g=h

This approach allows a single cookie to hold multiple name-value combinations without going over the
browser’s cookie limit. The downside to creating cookies in this format is that custom parsing is needed to
extract the values rather than relying on the much simplier cookie format. Some server-side frameworks are
beginning to support subcookie storage. The YUI Cookie utility, which | wrote, supports subcookies
reading/writing from JavaScript.

Cookies in JavaScript

You can create, manipulate, and remove cookies in JavaScript by using the document . cookie property.
This property acts as the set-Cookie header when assigned to and as the Cookie header when read from.
When creating a cookie, you must use a string that’s in the same format that Set-Cookie expects:

document.cookie="name=Nicholas; domain=nczonline.net; path=/";

Setting the value of document . cookie does not delete all of the cookies stored on the page. It simply
creates or modifies the cookie specified in the string. The next time a request is made to the server, these
cookies are sent along with any others that were created via set-Cookie. There is no perceivable difference
between these cookies.

To retrieve cookie values in JavaScript, just read from the document . cookie property. The returned string is
in the same format as the Cookie header value, so multiple cookies are separated by a semicolon and space.
Example:

namel=Greg; name2=Nicholas

Because of this, you need to parse the cookie string manually to extract actual cookie data. There are
numerous resources describing cookie parsing approaches for JavaScript, including my book, Professional
JavaScript, so | won’t go into it here. It's often easier to use an already-existing JavaScript library, such as
the YUI Cookie utility to deal with cookies in JavaScript rather than recreating these algorithms by hand.

http://blogs.msdn.com/ie/archive/2007/08/29/update-to-internet-explorer-s-cookie-jar.aspx
http://developer.yahoo.com/yui/cookie/
http://www.amazon.com/gp/product/047022780X?ie=UTF8&tag=nczonline-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=047022780X
http://developer.yahoo.com/yui/cookie/

The cookies returned by accessing document.cookie follow the same access rules as cookies sent to the
server. In order to access cookies via JavaScript, the page must be in the same domain and have the same
path and have the same security level as specified by the cookie.

Note: It's not possible to retrieve the options for cookies once they’ve been set via JavaScript, so you'll have
no idea what the domain, path, expiration date, or secure flag.

HTTP-Only cookies

Microsoft introduced a new option for cookies in Internet explorer 6 SP1: HT TP-only cookies. The idea behind
HTTP-only cookies is to instruct a browser that a cookie should never be accessible via JavaScript through
the document.cookie property. This feature was designed as a security measure to help prevent cross-site
scripting (XSS) attacks perpetrated by stealing cookies via JavaScript (I'll discuss security issues with cookies
in another post, this one is long enough as it is). Today, Firefox 2.0.0.5+, Opera 9.5+, and Chrome also
support HTTP-only cookies. Safari as of 3.2 still does not.

To create an HT TP-only cookie, just add an Ht tpOn 1y flag to your cookie:

Set-Cookie: name=Nicholas; HttpOnly

Once this flag is set, there is no access via document . cookie to this cookie. Internet Explorer also goes a
step further and doesn't allow access to this header using

the getAl1lResponseHeaders () OfgetResponseHeader () methods on XMLHt tpRequest While other
browsers still permit it. Firefox fixed this vulnerability in 3.0.6 though there are still various browser
vulnerabilities floating around (complete browser support list).

You cannot set HT TP-only cookies from JavaScript, which makes sense since you also can’t read them from
JavaScript.

Conclusion

There’s a lot to know and understand about cookies in order to use them effectively. It's truly amazing how a
technique created more than ten years ago is still in use in almost the exact same way as it was first
implemented. This post is a guide to the basics that everyone should know about cookies in browsers but is
not, in any way, a complete reference. Cookies are an important part of the web today and improperly
managing them can lead to all kinds of issues from poor user experience to security holes. | hope that this
writeup has shed some light on the magic of cookies.

Disclaimer: Any viewpoints and opinions expressed in this article are those of Nicholas C. Zakas and do not, in
any way, reflect those of my employer, my colleagues, \Wrox Publishing, O'Reilly Publishing, or anyone else. |
speak only for myself, not for them.

JRS i Ak

http://www.mozilla.org/security/announce/2009/mfsa2009-05.html
http://manicode.blogspot.com/2009/01/browser-httponly-support-update.html
https://www.owasp.org/index.php/HTTPOnly#Browsers_Supporting_HTTPOnly
http://www.wrox.com/
http://www.oreilly.com/
https://www.nczonline.net/blog/2009/05/05/http-cookies-explained/

	cookies详讲
	cookies的起源
	cookie是什么？
	创建cookie
	1
	Cookie : value
	1
	Cookie:value1 ; value2 ; name1=value1
	cookie编码（cookie encoding）
	有效期选项（The expires option）
	domain选项（The domain option）
	Path选项（The path option）
	secure选项（The secure option）
	cookie的维护和生命周期（cookie maintenance and lifecycle）
	使用失效日期（using expiration dates）
	cookie自动删除（automatic cookie removal）
	HTTP-Only cookies
	总结（conclusion）

	英文原版
	Origin of cookies
	What is a cookie?
	Cooke creation
	Cookie encoding
	The expires option
	The domain option
	The path option
	The secure option

	Cookie maintenance and lifecycle
	Using expiration dates
	Automatic cookie removal

	Cookie restrictions
	Subcookies
	Cookies in JavaScript

	HTTP-Only cookies
	Conclusion

