catf1ag Misc writeup(wp) 可能会持续更新

上所 2022-02-17 21:39:38 修改 ● 1538 ☆ 收藏 3
 分类专栏: cff 文章标签: 信息安全 python
 于 2021-12-31 19:20:43 首次发布
 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
 本文链接: https://blog.csdn.net/qq_42880719/article/details/122256008
 Kongale

ctf 专栏收录该内容

75 篇文章 28 订阅 订阅专栏

我不是很推荐连附件都不下载就直接看wp学习然后提交flag更不推荐看都不看为了上分提交flag。 但我还是要把flag放出来(

文章目录

师傅们,看这里!!! 签到题 height LSB I_Love_Math 0和1 just_zip enjoy 哇! 好多文件啊 恰恰相反 BOOM!!! 加密?-M syr2 杰瑞说我的手呢? 你以为这还是base64? BOOM-续章 lsb看了都说big 这是谁 套神的真传 easy_base64 哪? 审查元素 这么辛苦giegie也不会心疼 random_misc CC大学-M 这可莉害了 BOOM-2 过年了过年了 double-trouble-Hex BOOM-3 无字天书 好像是伪加密 mzq的抄写 洁白无暇-1 拼音 2022红包题(rgba) easy_py正则 vfree的成绩单

懒得的哥哥们,看这里!!!

catflag{ni79h10k5vuj8zymqxbs3f4l6potarw2gcde}

签到题

题目问建党一百周年是多久,格式为zygsctf{xxxx_xx_xx} 自己做

height

修改图片高度即可(随便拿张图举例)

da	ta.c	sv*	1	_ 10	0. p	ng ×										
式:	ーナネ	、进制	(H)		运行	脚本		运行	亍模板	χ៍: Ρ	NG.b					
					5	Ģ		ğ			B		Ď	Ę		0123456789ABCDEF
89	50	4E	47	0D	A 0	1A	0A	00	00	00	0D	49	48	44	52	2 %PNGIHDR
00	00	01	04	00	00	01	04	80	02	00	00	00	41	6A	DD)AjÝ

flag{height_and_width}

LSB

我不得不说这题挺傻逼不能大一点吗 flag在头发处

ы StegSolve 1.4 by Caesum (Mod by Giotino)	_		\times
le Analyse Help			
d plane 4			
Zoom: 100			
fiag[so_good_you_are]			5
	. 1		
and the second sec			
	8 N		
		X 1	
	CSDN @)是Mun	i uzi

flag{so_good_you_are}

I_Love_Math

参考https://cache.one/read/13135945 赣网杯2021 原题

flag{L1n34r_R3g7e5S10n_A_G00d_Th1ng}

0和1

0转成白色 1转成黑色 画33*33的图 然后把定位点补齐扫码即可

```
from PIL import Image
f = open('01.txt','r').readlines()
pic = Image.new('RGB',(len(f),len(f)),(255,255,255))
for i in range(len(f)):
    for j in range(len(f)):
        if(f[i][j] == '1'):
            pic.putpixel((j,i),(0,0,0))
pic = pic.resize((len(f)*10,len(f)*10))
pic.save('fllllag.png')
```


zygsctf{qrcode_is_fun}

just_zip

密码是QQ群号即226836122,解压出来的图片改zip再解压,flag在得到的图片的文件尾

catflag{WqPa1lob0SL8m4YsHJkNmkBYYTG7jxES}

enjoy

```
PDU解码+变异凯撒
点我解码
```

```
s = '^[m^cW\oX`[_hMPM_PUINc'
for i in range(len(s)):
    print(chr(ord(s[i]) +i+5),end=''
```

catflag{enjoy_catflag}

哇! 好多文件啊

7z打开文件,发现4.txt的CRC与其他的不同,于是打开4.txt,搜索zygs即可

zygsctf{p8071txoqh4m3rj9wysk5defgzuv62}

恰恰相反

盲文密码,得到的flagreverse即可,然后dalaa改成dalao 参考https://www.cnblogs.com/liume/p/10104530.html

catf1ag{dalao666}

BOOM! ! !

伍,5个数字,AAPR爆破得到密码57632,解压即可

zygsctf{r36178w9vgtmp5jhzusbi0dokayqlxef2c4n}

加密?-M

扫码, 蓝奏云下载附件, 得到的txt附件是0宽字符隐写, 解出来得到长度115(5的倍数)的01字符串, 培根密码解密即可 注意是小写

flag{dalaodaidaiwowuwuwu}

syr2

很明显的看出, png的字节倒了过来, 于是写个脚本再reverse一下

f = open('flag1.png','wb').write(open('flag_syr2.syr2','rb').read()[::-1])

得到二维码图片,扫码 得到@iH<,{FT7RYs<P{iWP0=<[A+EW base91解码得到flag

flag{ccdx_hacker_tql}

杰瑞说我的手呢?

png图片

7	·		1,22,114	. () 		~	M=1 1	_	~ .		~	_		_	_	_	X
							6				Ą	B	Ç	D	Ę		0123456789ABCDEF
	32	33	33	33	00	00	00	0D	49	48	44	52	00	00	00	ED	2333IHDRí
	00	00	00	F1	08	02	00	00	00	A 8	ЗB	Α7	38	00	00	20	ñ";§8
	00	45	41	53	59	78	01	\mathbf{EC}	DD	5B	В3	24	49	72	18	Eб	.EASYx.ìÝ[³\$Ir.æ
	RA	57	9D	7B	77	CF	CC	2E	R1	00	49	01	90	28	52	32	°₩ {wïÌ + T (R2

改成

	Ŷ	÷	4	Ş	÷	ب	, Ó	!	ò	2	H	Ч,	Ļ	ų	ų.	Ľ	0153430103406000
1:		50	4E		0D	A 0	1A	A 0	00	00	00	0D	49	48	44	52	%PNGIHDR
1:	00	00	00	$\mathbf{E}\mathbf{D}$	00	00	00	F1	08	02	00	00	00	A 8	3B	A7	íñ¨;§
1:	38	00	00	20	00	45	41	53	59	78	01	\mathbf{EC}	DD	5B	в3	24	8EASYx.ìÝ[°\$
1:	49	72	18	Eб	BA	57	9D	7B	77	CF	CC	2E	B1	00	49	01	Ir.æ°W.{wÏÌ.±.I.

此时图片还是出错

上图能注意到,IDAT的位置被改成了EASY 于是将EASY改成IDAT

Ó	1	_2_	3	4	Ş	- Ģ	1	- 8	9	Ą	B	Ċ	Ď	Ē	F	0123456789ABCDEF
89	50	4E	47	0D	A0	1A	$\mathbf{A0}$	00	00	00	0D	49	48	44	52	%PNGIHDR
00	00	00	ED	00	00	00	F1	08	02	00	00	00	8A	ЗB	Α7	íñ;§
38	00	00	20	00	49	44	41	54	78	01	EC	DD	5B	в3	24	8IDATx.ìÝ[°\$
49	72	18	E6	RΔ	57	٩n	7R	(77)	CF	CC	2E	R1	00	49	01	Træ°W (witt + T

即可得到flag

flag{QLNU6666666}

你以为这还是base64?

在文本前面加上data:image/png;base64, 然后浏览器打开即可

zygsctf{ziyougongshi}

BOOM-续章

jpg的属性发现cGFzc3dvcmQ6dmZyMTE=,解码得到密码vfr11 当然爆破也行 flag改成flag.zip

zygsctf{yxgm3cukn0vhqtdji5ez7r8bw1269aops4fl}

lsb看了都说big

见https://blog.csdn.net/zip471642048/article/details/121734206

这是谁

见https://blog.csdn.net/zip471642048/article/details/122018742

套神的真传

见https://blog.csdn.net/zip471642048/article/details/122018326

easy_base64

为什么不手撸而要写脚本呢 是手撸不快了吗

zygsctf{4j2ag83qxdhuwoyr76c91szv0lekb5mtifpn}

哪?

百度识图, 西安钟楼

zygsctf{xi_an_zhong_lou}

审查元素

公告栏!!!公告栏!!!那里F12能看到 class="No Hs Bk Lr Db Uup Lr Rg Rg Fm" 原子序数转ascii字符即可

s = '102 108 97 103 105 115 103 111 111 100'
s = s.split(' ')
for i in s:
 print(chr(int(i)),end='')

zygsctf{flagisgood}

这么辛苦giegie也不会心疼

问flag在哪 答叫输入whereis flag 问whereis flag 答flag in /etc/f1ag 问tac /etc/f1ag 答

catflag{hxfumesglji7o2n0pdk1y8w5r3tv9baz6c4q}

random_misc

首先猜测格式 flag 、 catflag 、 zygsctf 进行爆破,找出e的值 测试之后发现能得到200 182 93 227 25 182 236的是catflag 顺便就得到了e的值28560,除以255即112。如下

```
from random import randint
from math import floor, sqrt
a = ''
b = 'catflag'
d = [ ord(c) for c in b ]
for e in range(65,127):
    e = e * 255
    for c in range(len(b)):
        a += str(int(floor(float(e + d[c]) / 2 + sqrt(e * d[c])) % 255)) + ' '
    print(a)
    a = ''
    print(e)
```

然后爆破即可,如下

```
from random import randint
from math import floor, sqrt
a = ''
e = 112 * 255
b = "200 182 93 227 25 182 236 150 60 245 254 84 164 254 84 164 227 101 42 42 134 222 166"
b = b.split(' ')
for c in range(len(b)):
    for i in range(32,128):
        tmp = str(int(floor(float(e + i) / 2 + sqrt(e * i)) % 255))
        if(tmp == b[c]):
            a += chr(i)
            break
print(a)
```

得到flag:catfla5{This_is_funny!} 然后5改成g即可

catflag{This_is_funny!}

CC大学-M

属性里面有一句话 md5(CCDX_CTF) 文件尾有一个zip文件,手动分离一下 然后这里的md5是16位的这里加密 得到密码464d81f01c215e93 即可成功解压zip文件

flag{ccdx-cctf-ce78d1da254c0843eb23951ae077ff5f}

这可莉害了

压缩包最下面"出去玩"对应out 猜测outguess 可莉双倍快乐,可莉生日0727 双倍即07270727 使用outguess outguess -k "07270727" -r file.jpg Klee.txt 得到密码

klee~klee~klee

得到第二张图片 第二张图片文件尾是一个base64串,不能直接解,猜测对称加密。 没想到的是直接在这里搜klee就能找到key了

.h©.,°xÁß5‡o.kle e's treasure:.be ng_beng_zha_dan! .&vchAA(Inu .-Ă* AES加密模式: ECB ∨ 填充: zeropadding ∨ 数据块: 128位 ∨ 密码: lg_beng_zha_dan! 係 待加密、解密的文本: ● × o+nzZSjmLVQS6C5a3BB1NbjefbkLiGj8sfGDSWGXTOYCb1eA8ao6lWwsEbmPdMkK

↑将你电脑文件直接拖入试试^-^	AES力IR
AES加密、解密转换结果(base64了): 🎦 🗙 🛹	
catflag{klee_want_to_play_with_you!}	CSDN @是Mumuzi

catf1ag{klee_want_to_play_with_you!}

BOOM-2

使用rockyou字典爆破,得到密码 解压出来的密文尝试凯撒并不正确,于是猜测维吉尼亚 反向测试发现key为mz 得到flag

catflag{508855ee-6ac1-11ec-97ae-3c7c3fb9e9bb}

过年了过年了

-的意思是负而不是分隔符 题目第一反应是日历和数字有关然后猪圈密码,但是最后发现6位一组的话,且大小都是在19w~25w内活动,猜测是要除以一个 数字。且对200277、196037进行分解之后,明显发现196037分解之后是2021*97 根据过年了,于是猜测是都除以了一个2021,且200277//2021=c,符合catflag的开头

脚本如下

```
s = '200277-196037234668-206142218484-196037208369-248583139587-238478224553-218268236691-234436212415-224331222
530-196037230622-244541192185-238478196231-230394212415-196037234668-212205224553-222310192185-224331206346-1919
95135541-196037204323-232415196231-230394252875'
s = s.split('-')
print(chr(int(s[0])//2021),end="")
for i in range(1,len(s)):
    for j in range(2):
        print(chr(int(s[i][6*j:6*j+6])//2021),end='')
```

catflag{Evolutionary_variation_of_Caesar}

double-trouble-Hex

第一步是twin-hex,找到在线网站解码即可。

https://www.calcresult.com/misc/cyphers/twin-hex.html

第二步是爆破emoji-aes,把源码下载下来找到对应关系,然后爆破aes,aes-base64他用的是crypto-js,总之写个脚本爆破就行了。

但是好像也能直接调用来进行爆破(?

我不会 我写的脚本,总之爆破得到flag和key

catflag{twin-hex_and_emoji-aes}

BOOM-3

百度找个脚本爆破就行了,然后搜索flag

```
def decrypt():
 ny.append(n)
cipher = 'cqznjpzccjmrvjiyrekxxbkxxb'
for k1 in ny:
  p.append('\n 逆元=' + str(k1) + ' k2=' + str(k2) + ' ')
  for i in range(len(cipher)):
   if cipher[i].islower():
    t1 = ord(cipher[i]) - 97 - k2
    p.append(chr((k1 * t1) % 26 + 97))
   elif cipher[i].isupper():
     t2 += 26
    p.append(chr((k1 * t2) % 26 + 65))
    p.append(cipher[i])
w.write(plain)
w.close()
if ___name___ == '___main___':
decrypt()
```

catf1ag{flagisaffinecipherboomboom}

其实我刚开始是想直接棱quipqiup 但是最后差最后8个字母没猜出来是boom 可以看看我的想法,没有啥实际用处:首先quipqiup猜测密文对应关系 cqznjpzccjmrvjiyrekxxbkxxb flagis 然后发现。 cqznjpzccjmrvjiyrekxxbkxxb flagisaffine 此时又发现j对应上了i正好仿射密码完整的是affine cipher 直接就猜到对应关系是 cqznjpzccjmrvjiyrekxxbkxxb flagisaffinecipher 最后就差kxxbkxxb, emm,没猜出来,结果还是去找脚本了属于是。

无字天书

长安"战疫"网络安全卫士守护赛的题,直接交了 flag和wp详细看另一篇博客

好像是伪加密

	flag.zip×																
ĪĪ	t:	ナナ	∖进制	(H)	~	运行	脚本	. ~	运行	ī模板	Q៍: Z	IP.b	t V	⊳			
	Ò					5	6	1				B		D	Ę		0123456789ABCDEF
5	50	4B	03	04	14	00	52	00	00	00	F7	A2	25	54	79	2C	PK <mark>R</mark> ÷¢%Ty,
2	2E	6D	F6	C0	00	00	F6	C0	00	00	0C	00	00	00	35	31	.möÀöÀ51
	35	33	34	33		39	2E	7A	69	70	50	4B	03	04	14	00	534379.zipPK
7	10	00	00	00	57	7.2	25	51	77	21	51	гD	75	C'0	00	00	$T \rightarrow A \otimes m_{12} 1 \otimes \infty$

这里,写个脚本每次都提取出

来,并且改成00来循环解压

import	zipfile
import	os
s = ''	
name =	'flag'
try:	
whi	le True:
	<pre>f = open(f'{name}.zip', 'rb').read()</pre>
	<pre>s += str(hex(f[6]))[2:].zfill(2)</pre>
	<pre>new_zip = open('newzip.zip','wb').write(f[:6]+f[5:6]+f[7:])</pre>
	<pre>zipf = zipfile.ZipFile('newzip.zip')</pre>
	zipf.extractall()
	<pre>zipf.close()</pre>
	os.remove(f'{name}.zip')
	<pre>name = zipf.namelist()[0][:-4]</pre>
	os.remove('newzip.zip')
except:	
pri	nt(s)

解压出来的flag.txt能得到第二部分,然后上面输出的s从hex到ascii之后能得到webp文件,是一个二维码,扫码即可得到第一部分flag

catf1ag{good_job_and_zip_crypto}

mzq的抄写

又能进行分解,于是又画图

扫码得到

观察到只有mumuzi和izumum,将mumuzi转成1(因为mumuzi不是0),izumum转成0. 然后发现并不是114514个字节,用010打开发现有零宽字符 Unicode Steganography with Zero-Width Characters 用默认的配置解,得到数字66564

```
from PIL import Image
n = 37
pic = Image.new('RGB',(n,n),(255,255,255))
f = open('ah.txt','r').read()[:66564]
for i in range(n):
        for j in range(n):
            if(f[i*n+j] == '1'):
                pic.putpixel((j,i),(0,0,0))
pic.show()
pic.save('what.png')
```


扫码得到flag

catf1ag{114514_mumuzi}

洁白无暇-1

文件尾有段flag密文,凯撒偏移2得到catf1ag{flag_is_not_here_but_in_the_a_and_b},是fake flag 然后用stegsolve打开,稍微看一下通道能看见二维码 扫码得到catf1ag{flag_in_mzq_heart},尝试提交发现是又是fake flag 再继续看通道,发现alpha通道和blue通道都有一条线在变化,用计算机自带的画图工具查看之后得到这条线是在宽为20地方 结合第一个fake flag,推测a->alpha,b->blue 于是写个脚本分别提取这条线的值

```
from PIL import Image
pic = Image.open('png.png')
h = pic.size[1]
flag = [0]*h
for i in range(h):
   tmp = list(pic.getpixel((20,i)))[2]
   if(tmp != 0):
     flag[i] = tmp
   tmp = list(pic.getpixel((20,i)))[3]
   if(tmp != 0):
     flag[i] = tmp
print(''.join(chr(i) for i in flag))
```

得到flag

catf1ag{flag_is_RGBA_secret}

拼音

就单纯的取拼音的声母 陈啊跳分1啊高{啊不陈的额分高好i健看了吗年哦盘群人是跳uv我小有在}

2022红包题(rgba)

010打开,发现文件尾还有一个png图片,只是PNG的头改成了MZQ,改回来然后分离出来就可以了。 然后发现分离出来的图片,每一横排的值都是一样的,猜想是竖着看。写个脚本提取一下第一列的RGBA值,发现都在可打印 ascii的范围内,于是写个脚本。

Happy new year. I wish you good health and academic success. You can bypass everything, solve all problems, and give you flag: catf1ag{98405cc5-8288-11ec-a207-3c7c3fb9e9bb}

得到flag:

catf1ag{98405cc5-8288-11ec-a207-3c7c3fb9e9bb}

easy_py正则

只要满足 ^[c]atf[0-1]agi[s]{2}og[o]{2}d,[I]like[c]atf[0-1]ag[6]{3}\$ 就可以了

点我看看 点上面的看看就知道了 所以得到vfree_doll想要的flag:

catf1agissogood,Ilikecatf1ag666

vfree的成绩单

第一部分是成绩单上的数字

From Decimal		⊘ 11	99 97 116 102 49 9	7 103 123 50 52 53 51
Delimiter Space	Support signed values			
			Output	
			catflag{2453	CSDN @是Mumuzi

U2FsdGVkX18yNX2nppxF2v0OBXU1JGisr70kGrSAn6U=
ODES ORC4 ORabbit OTripleDes
vfree
加密 解密 清空输入框 复制结果文本
ea79-8bc7-11 CSDN @是Mumuzi

第三部分是文件尾的特征块,很明显的oursecret

password在第二个text块(hongkongdoll_is_vfree_like),当然这个password也提示了OS(oursecret)

E Our Secret	Make your	secrets invis	ible in just 3 easy	steps !
		UNHI Step1: Spe	DE cify a carrier file	
Read Message	× 4		(1) 0: 2/	10170 h to -
Subject		vfree_sco	ore(1).png Size: 34	to I /o bytes
flag		Step 2: Ente	er password	
Text		•••••		•••
ec-ac4T-3C/C3TD9e3DD}		🕅 Unhi	ide (double o	click to save)
		Туре	Name	Size (k)
		Message	flag	0
	~ -			
<	>			
Saus TYT		<		>
Save as TXT				P

catf1ag{2453ea79-8bc7-11ec-ac4f-3c7c3fb9e9bb}