
Unlocking the Motorola Bootloader (Feb, 2016)

maspchen 于 2016-02-17 06:15:35 发布 1363 收藏
文章标签： Android unlock bootloader aboot trustzone
原文地址：http://bits-please.blogspot.co.il/2016/02/unlocking-motorola-bootloader.html

In this blog post, we'll explore the Motorola bootloader on recent Qualcomm Snapdragon devices. Our goal will be to unlock the bootloader of a
Moto X (2nd Gen), by using the TrustZone kernel code execution vulnerability from the previous blog posts. Note that although we will show the
complete unlocking process for this specific device, it should be general enough to work at-least for most modern Motorola devices.

After reporting the previous TrustZone kernel privilege escalation to Qualcomm, I was gifted a shiny new Moto X. However... There was one little
snag - they accidentally sent me a locked device. This was a completely honest mistake, and they did offer many times to unlock the device - but
where's the fun in that? So without further ado, let's dive into the Motorola bootloader and see what it takes to unlock it.

Before we start our research, let's begin with a short introduction to the boot process - starting right at the point at which a device is powered on.

First - the PBL (Primary Boot Loader), also known as the "BootROM" is executed. Since the PBL is stored within an internal mask ROM, it
cannot be modified or provisioned, and is therefore an intrinsic part of the device. As such, it only serves the very minimal purpose of allowing the
device to boot, and authenticating and loading the next part of the boot-chain.

Then, two secondary bootloaders are loaded, SBL1 (Secondary Boot Loader), followed by SBL2. Their main responsibility is to boot up the
various processors on the SoC and configure them so that they're ready to operate.

Next up in the boot-chain, the third and last secondary bootloader, SBL3, is loaded. This bootloader, among other tasks, verifies and loads the
Android Bootloader - "aboot".

Now this is where we get to the part relevant for our unlocking endeavours; the Android Bootloader is the piece of software whose responsibility is,
as its name suggests, to load the Android operating system and trigger its execution.

This is also the piece of boot-chain that OEMs tend to customize the most, mainly because while the first part of the boot-chain is written by
Qualcomm and deals with SoC specifics, the Android bootloader can be used to configure the way the Android OS is loaded.

Among the features controlled by aboot is the "bootloader lock" - in other words, aboot is the first piece of the boot-chain which can opt to break
the chain of trust (in which each bootloader stage verifies the next) and load an unsigned operating system.

For devices with an unlockable bootloader, the unlocking process is usually performed by rebooting the device into a special ("bootloader") mode,
and issuing the relevant fastboot command. However, as we will later see, this interface is also handled by aboot. This means that not only does
aboot query the lock status during the regular boot process, but it also houses the code responsible for the actual unlocking process.

As you may know, different OEMs take different stances on this issue. In short, "Nexus" devices always ship with an "unlockable" bootloader. In
contrast, Samsung doesn't allow bootloader unlocking for most of its devices. Other OEMs, Motorola included, ship their devices locked, but
certain devices deemed "eligible" can be unlocked using a "magic" (signed) token supplied by the OEM (although this also voids the warranty for
most devices).

So... it's all very complex, but also irrelevant. That's because we're going to do the whole process manually - if aboot can control the lock status of
the device, this means we should probably be able to do so as well, given an elevated enough set of privileges.

Now that we have a general grasp of the components involved and of our goal, the next stage is to analyse the actual aboot code.

Since the binaries for all stages of the boot-chain are contained within the factory firmware image, that would naturally be a good place to start.

WHY MOTOROLA?

SETTING THE STAGE

GETTING STARTED

https://blog.csdn.net/maspchen
https://so.csdn.net/so/search/s.do?q=Android&t=blog&o=vip&s=&l=&f=&viparticle=
https://so.csdn.net/so/search/s.do?q=unlock&t=blog&o=vip&s=&l=&f=&viparticle=
https://so.csdn.net/so/search/s.do?q=bootloader&t=blog&o=vip&s=&l=&f=&viparticle=
https://so.csdn.net/so/search/s.do?q=aboot&t=blog&o=vip&s=&l=&f=&viparticle=
https://so.csdn.net/so/search/s.do?q=trustzone&t=blog&o=vip&s=&l=&f=&viparticle=
http://bits-please.blogspot.co.il/2015/08/full-trustzone-exploit-for-msm8974.html
http://bits-please.blogspot.co.il/2015/08/full-trustzone-exploit-for-msm8974.html
http://1.bp.blogspot.com/-TbQFHjQnp4U/Vqks6Pf1mEI/AAAAAAAADOg/CxXiVry0xAQ/s1600/bootloader.png
https://wiki.cyanogenmod.org/w/Doc:_fastboot_intro
https://2.bp.blogspot.com/-Rb1K4q3JNKQ/VrsUqAMUNSI/AAAAAAAADS4/BcRT4pdE71A/s1600/Screenshot%252Bfrom%252B2016-02-10%252B12%25253A44%25253A43.png
https://1.bp.blogspot.com/-VLV28WmNWOk/VrsSgHc_MwI/AAAAAAAADSs/XvbdVRqLCdg/s1600/Screenshot%252Bfrom%252B2016-02-10%252B12%25253A35%25253A13.png
https://github.com/laginimaineb/unpack_motoboot/blob/master/unpack_motoboot.py

There are several download links available - here are a few. In case you would like to follow along with me, I'm going to refer to the symbols in the
version "ATT_XT1097_4.4.4_KXE21.187-38".

After downloading the firmware image, we are faced with our first challenge - the images are all packed using a proprietary format, in a file called
"motoboot.img". However, opening the file up in a hex-editor reveals it has a pretty simple format we can deduce:

As you can see above, the sought-after aboot image is stored within this file, along with the TrustZone image, and various stages of the boot-
chain. Good.

After analysing the structure above, I've written a python script which can be used to unpack all the images from a given Motorola bootloader
image, you can find it here.

We'll start by inspecting the aboot image. Discouragingly, it is 1MB large, so going over it all would be a waste of time. However, as we've
mentioned above, when booting the device into the special "bootloader" mode, the actual interaction with the user is provided by aboot itself. This
means that we can start by searching for the strings which are displayed when the unlocking process is performed - and continue from there.

A short search for the "unlock..." string which is printed after starting the unlock process brings us straight to the function (@0xFF4B874) which
deals with the unlocking logic:

That was pretty fast!

As you can see, after printing the string to the console, three functions are called consecutively, and if all three of them succeed, the device is
considered unlocked.

Going over the last two functions reveals their purpose is to erase the user's data partitions (which is always performed after the bootloader is
unlocked, in order to protect the device owner's privacy). In any case, this means they are irrelevant to the unlocking process itself and are simply
side-effects.

This leaves us with a single function which, when called, should unlock the bootloader.

So does this mean we're done already? Can we just call this function and unlock the device?

Actually, not yet. Although the TrustZone exploit allows us to achieve code-execution within the TrustZone kernel, this is only done after the
operating system is loaded, at which point, executing aboot code directly could cause all sorts of side-effects (since, for example, the code might
assume that there is no operating system/the MMU could be disabled, etc.). And even if it were that simple, perhaps there is something interesting
to be learned by fully understanding the locking mechanism itself.

Regardless, if we can understand the logic behind the code, we can simply emulate it ourselves, and perform the meaningful parts of it from our
TrustZone exploit. Analysing the unlocking function reveals a surprisingly simple high-level logic:

Unfortunately, these two functions wreak havoc within IDA (which fails to even display a meaningful call-graph for them).

Manually analysing the functions reveals that they are in fact quite similar to one another. They both don't contain much logic of their own, but
instead they prepare arguments and call the following function:

This is a little surprising - instead of handling the logic itself, this function issues an an SMC (Supervisor Mode Call) in order to invoke a
TrustZone system-call from aboot itself! (as we've discussed in previous blog posts). In this case, both functions issue an SMC with the request
code 0x3F801. Here is the relevant pseudo-code for each of them:

At this point we've gleaned all the information we need from aboot, now lets switch over to the TrustZone kernel to find out what this SMC call
does.

MUCH ADO ABOOT NOTHING

ENTER STAGE LEFT, TRUSTZONE

http://forum.gsmhosting.com/vbb/f783/firmware-motorola-moto-x-abhayranasingh-firmware-1970675/
http://2.bp.blogspot.com/-_02hOx5UGLE/VqVugCVVtKI/AAAAAAAADNI/1yYZAgxIpPo/s1600/Screenshot%252Bfrom%252B2016-01-25%252B02%25253A38%25253A06.png
https://github.com/laginimaineb/unpack_motoboot/blob/master/unpack_motoboot.py
https://github.com/laginimaineb/unpack_motoboot/blob/master/unpack_motoboot.py
https://3.bp.blogspot.com/-iaif1sGbQro/Vrp2FKzHP9I/AAAAAAAADRE/cGZj_dy8Hiw/s1600/Screenshot%252Bfrom%252B2016-02-10%252B01%25253A28%25253A06.png
https://4.bp.blogspot.com/--fEOHMT3tnE/Vrp0mf9tP0I/AAAAAAAADQ4/SzpPjbPxD8U/s1600/Screenshot%252Bfrom%252B2016-02-10%252B01%25253A19%25253A43.png
https://4.bp.blogspot.com/-ZZ614Z86psk/Vrp4cXmFu8I/AAAAAAAADRU/jgZmj18XlQE/s1600/Screenshot%252Bfrom%252B2016-02-10%252B01%25253A37%25253A55.png
https://4.bp.blogspot.com/-J3MaZuCJ1NA/Vrs1WpGr6QI/AAAAAAAADTI/HrMWr9vqWq4/s1600/Screenshot%252Bfrom%252B2016-02-10%252B15%25253A04%25253A00.png
http://bits-please.blogspot.co.il/2015/03/getting-arbitrary-code-execution-in.html
https://2.bp.blogspot.com/-zKRDB4xThs4/Vrs9hihpYgI/AAAAAAAADTc/WPXXIHK-mYU/s1600/Screenshot%252Bfrom%252B2016-02-10%252B15%25253A39%25253A04.png
https://4.bp.blogspot.com/-ISOLNUyPQsU/Vrs9AI842TI/AAAAAAAADTY/l3kYNSGrvl8/s1600/Screenshot%252Bfrom%252B2016-02-10%252B15%25253A36%25253A15.png

Now that we've established that an SMC call is made with the command-code 0x3F801, we are left with the task of finding this command within the
TrustZone kernel.

Going over the TrustZone kernel system calls, we arrive at the following entry:

This is a huge function which performs widely different tasks based on the first argument supplied, which we'll call the "command code" from now
on.

It should be noted an additional flag is passed into this system-call indicating whether or not it was called from a "secure" context. This means that
if we try invoking it from the Android OS itself, an argument will be passed marking our invocation is insecure, and will prevent us from performing
these operations ourselves. Of course, we can get around this limitation using our TrustZone exploit, but we'll go into that later!

As we've seen above, this SMC call is triggered twice, using the command codes #1 and #2 (I've annotated the functions below to improve
readability):

In short, we can see both commands are used to read and write (respectively) values from something called a "QFuse".

Much like a real-life fuse, a QFuse is a hardware component which facilitates a "one-time-writeable" piece of memory. Each fuse represents a
single bit; fuses which are in-tact represent the bit zero, and "blown" fuses represent the bit one. However, as the name suggests, this operation is
irreversible - once a fuse is blown it cannot be "un-blown".

Each SoC has it's own arrangement of QFuses, each with it's own unique purpose. Some fuses are already blown when a device is shipped, but
others can be blown depending on the user's actions in order to change the way a specific device feature operates.

Unfortunately, the information regarding the role of each fuse is not public, and we are therefore left with the single option of reversing the various
software components to try and deduce their role.

In our case, we call a specific function in order to decide which fuse we are going to read and write:

Since we call this function with the second syscall argument, in our case "4", this means we will operate on the fuse at address 0xFC4B86E8.

Now that we understand the aboot and the TrustZone logic, we can put them together to get the full flow:

First, aboot calls SMC 0x3F801 with command-code #1

This causes the TrustZone kernel to read and return the QFuse at address 0xFC4B86E8

Then, iff the first bit in the QFuse is disabled, aboot calls SMC 0x3F801 once more, this time with command-code #2

This causes the TrustZone kernel to write the value 1 to the LSB of the aforementioned QFuse.

Turns out to be very simple after all - we just need to set a single bit in a single QFuse, and the bootloader will be considered unlocked.

But how can QFuses be written?

Luckily the TrustZone kernel exposes a pair of system-call which allow us to read and write a restricted set of QFuses - tzbsp_qfprom_read_row
and tzbsp_qfprom_write_row, respectively. If we can lift those restrictions using our TrustZone exploit, we should be able to use this API in order to
blow the wanted QFuse.

Lets take a look at these restrictions within the tzbsp_qfprom_write_row system-call:

So first, there's a DWORD at 0xFE823D5C which must be set to zero in order for the function's logic to continue. Normally this flag is in fact set to

QFUSES

PUTTING IT ALL TOGETHER

DIY QFUSES

https://1.bp.blogspot.com/-FxCt_WSmSy0/VrqBJ54cqVI/AAAAAAAADSA/BuD0JUp6DsE/s1600/Screenshot%252Bfrom%252B2016-02-10%252B02%25253A15%25253A25.png
https://4.bp.blogspot.com/-BTcp6s9seYY/VrqCyxQh0zI/AAAAAAAADSM/b8kvtdhRSYo/s1600/Screenshot%252Bfrom%252B2016-02-10%252B02%25253A22%25253A02.png
https://3.bp.blogspot.com/-ycbi4Npm5_U/VrtY4u2HUeI/AAAAAAAADT0/Ql51VN30f-0/s1600/Screenshot%252Bfrom%252B2016-02-10%252B17%25253A35%25253A55.png
https://2.bp.blogspot.com/-4Z9P8cCNz6A/VruECONo54I/AAAAAAAADUE/lJMu3ZJ1fug/s1600/Screenshot%252Bfrom%252B2016-02-10%252B20%25253A38%25253A55.png

one, thus preventing the usage of the QFuse calls, but we can easily enough overwrite the flag using the TrustZone exploit.

Then, there's an additional function called, which is used to make sure that the ranges of fuses being written are "allowed":

As we can see, this function goes over a static list of pairs, each denoting the start and end address of the allowed QFuses. This means that in
order to pass this check, we can overwrite this static list to include all QFuses (setting the start address to zero and the end address to the
maximal QFuse relative address - 0xFFFF).

Now that we have everything figured out, it's time to try it out ourselves! I've written some code which does the following:

Achieves code-execution within TrustZone
Disables the QFuse protections
Writes the LSB QFuse in QFuse 0xFC4B86E8

I encourage you to check out the code here: https://github.com/laginimaineb/Alohamora

Have fun!

In this blog post we went over the flow controlled by a single QFuse. But, as you can probably guess, there are many different interesting QFuses
out there, waiting to be discovered.

On the one hand, blowing a fuse is really "dangerous" - making one small mistake can permanently brick you device. On the other hand, some
fuses might facilitate a special set of features that we would like to enable.

One such example is the "engineering" fuse; this fuse is mentioned throughout the aboot image, and can be used to enable an amazing range of
capabilities such as skipping secure boot, loading unsigned peripheral images, having an unsigned GPT, and much more.

However, this fuse is blown in all consumer devices, marking the device as a "non-engineer" device, and disabling these features. But who knows,
maybe there are other fuses which are just as important, which have not yet been discovered...

Posted by laginimaineb at 21:27

Labels: Android, Bootloader, exploit, Moto X, Motorola, qfuse, TrustZone, unlock

TRYING IT OUT

FINAL THOUGHTS

 f r am ebor der =" 0" hspace=" 0" m ar ginheight =" 0" m ar ginwidt h=" 0" scr olling=" no" t abindex=" 0" vspace=" 0" widt h=" 100% " id=" I 0_1455658683748" nam e=" I 0_1455658683748" sr c=" ht t ps: / / apis. google. com / u/ 0/ se/ 0/ _/ +1/ f ast but t on?
usegapi=1&sour ce=blogger % 3Ablog% 3Aplusone&size=m edium &widt h=300&annot at ion=inline&hl=en_G B&or igin=ht t p% 3A% 2F% 2Fbit s- please. blogspot . co. il&ur l=ht t p% 3A% 2F% 2Fbit s- please. blogspot . com % 2F2016% 2F02% 2Funlocking- m ot or ola- boot loader . ht m l&gsr c=3p&ic=1&jsh=m % 3B% 2F_% 2Fscs% 2Fapps-
st at ic% 2F_% 2Fjs% 2Fk% 3Doz. gapi. en. a_H8_1L9VPo. O % 2Fm % 3D__f eat ur es__% 2Fam % 3DAQ % 2Fr t % 3Dj% 2Fd% 3D1% 2Ft % 3Dzcm s% 2Fr s% 3DAG LTcCO 6g8LzW Y4Tnes3m ZRHS682lN-
HKQ #_m et hods=onPlusO ne% 2C_r eady% 2C_close% 2C_open% 2C_r esizeM e% 2C_r ender st ar t % 2Concir cled% 2Cdr ef r esh% 2Cer ef r esh&id=I 0_1455658683748&par ent =ht t p% 3A% 2F% 2Fbit s- please. blogspot . co. il&pf nam e=&r pct oken=36125414" dat a- gapiat t ached=" t r ue" t it le=" +1" st yle=" posit ion: st at ic; t op: 0px; widt h: 300px; m ar gin: 0px;
bor der - st yle: none; lef t : 0px; visibilit y: visible; height : 20px; " >

Replies

Reply

17 comments:

1. Braden 10/02/2016, 22:15

Lol, love the warning message. Injury to users!?
Reply

1. 1. laginimaineb 10/02/2016,
22:33Those allergic to excessive warning messages, maybe?

2. F8 11/02/2016, 04:06

Hold Up! Did you really just do this
Reply

https://1.bp.blogspot.com/-dkMMgqwbsx8/VruFK6Qdg2I/AAAAAAAADUM/Yv6INnWKFYQ/s1600/Screenshot%252Bfrom%252B2016-02-10%252B20%25253A44%25253A52.png
https://github.com/laginimaineb/Alohamora
https://4.bp.blogspot.com/-eBN8JdbJFX0/VruJuPiQMuI/AAAAAAAADUc/qQMZ3Z1lTc0/s1600/motox_unlocked.png
https://2.bp.blogspot.com/-Lt9HSWJvfDY/VruJcecESqI/AAAAAAAADUY/OU7WJcHS10g/s1600/motox_unlocked.png
https://3.bp.blogspot.com/-h9yEGl7JbT0/VruPJk8GcMI/AAAAAAAADUs/MG2C5E6Pycc/s1600/Screenshot%252Bfrom%252B2016-02-10%252B21%25253A10%25253A39.png
https://www.blogger.com/profile/00867710965331025912
http://bits-please.blogspot.co.il/2016/02/unlocking-motorola-bootloader.html
https://www.blogger.com/share-post.g?blogID=2029700426505953971&postID=1011524094448370745&target=email
https://www.blogger.com/share-post.g?blogID=2029700426505953971&postID=1011524094448370745&target=blog
https://www.blogger.com/share-post.g?blogID=2029700426505953971&postID=1011524094448370745&target=twitter
https://www.blogger.com/share-post.g?blogID=2029700426505953971&postID=1011524094448370745&target=facebook
https://www.blogger.com/share-post.g?blogID=2029700426505953971&postID=1011524094448370745&target=pinterest
http://bits-please.blogspot.co.il/search/label/Android
http://bits-please.blogspot.co.il/search/label/Bootloader
http://bits-please.blogspot.co.il/search/label/exploit
http://bits-please.blogspot.co.il/search/label/Moto%20X
http://bits-please.blogspot.co.il/search/label/Motorola
http://bits-please.blogspot.co.il/search/label/qfuse
http://bits-please.blogspot.co.il/search/label/TrustZone
http://bits-please.blogspot.co.il/search/label/unlock
https://www.blogger.com/profile/03312084425322027909
http://bits-please.blogspot.com/2016/02/unlocking-motorola-bootloader.html?showComment=1455135350645#c5597891463744982029
https://www.blogger.com/profile/00867710965331025912
http://bits-please.blogspot.com/2016/02/unlocking-motorola-bootloader.html?showComment=1455136416314#c4997826855640499435
https://www.blogger.com/profile/17549340366994830520
http://bits-please.blogspot.com/2016/02/unlocking-motorola-bootloader.html?showComment=1455156363038#c6260293232537191097

Replies

3. Madushan Nishantha 11/02/2016, 06:07

Hi, I'm wondering how did you did the trustzone exploit on this device. As I can remember your trustzone exploit
needed a modified kernel (or can I load it as a kernel module?) And if the device is bootloader locked how did
you get the custom kernel to run?
Thank you for the research :D If this is double on by loading a kernel module. I'm going to try adjust this to my
Fire Phone(It'll probably brick :P But I'm going to do it anyway)
Reply

1. 1. Justin Case 11/02/2016, 06:14

This wouldnt apply to the firephone, iirc the boot unlock mechanism on that is a signed blob, not a
qfuse.

2. laginimaineb 11/02/2016,
14:33Hi Madushan,

I read your question and got a little curious, so I downloaded the Fire Phone aboot and had a look
at it.

As Justin said, the bootloader lock there is facilitated by using a signed blob. Here is the unlocking
code: http://imgur.com/OZeTqNC

That said, it might still be possible to craft a blob that'll cause the verification to pass, ultimately
depends on how the verification is done (let me know if you take a look at it!).

Anyway, as for the unlocking code I provided - you're right, this version of the code depends on my
modified kernel. I also have another version, written in C, which uses a kernel exploit to directly
execute code in the kernel and issue SMCs from there. I'll publish that as well (just need to clean it
up a little).

Gal.

3. laginimaineb 11/02/2016,
14:59UPDATE: Dug a little bit deeper; seems like a 2048-bit RSA signature. I carved out the certificate:

http://imgur.com/1a2TY0P

So unless there's some kind of bug in the verification itself or an alternative unlocking flow, seems
like a no-go.

4. laginimaineb 11/02/2016,
15:46UPDATE2: So the code actually calls RSA_public_decrypt (with PKCS1 padding) on the given

token, then makes sure that the content in it is 0x[SOME_WORD][SOME_DWORD]
[zero_pad_to_length_256]. I'm still thinking about this a little... I don't know what these DWORDs
are (could try and find out), but if they can be changed, then you could modify them to fit any given
signed token (for any other phone).

5. laginimaineb 11/02/2016,
16:15UPDATE3: Okay - a lot of the code there is borrowed from LK

(https://www.codeaurora.org/cgit/external/gigabyte/qrd-gb-dsds-
7225/plain/bootable/bootloader/lk/platform/msm_shared/mmc.c) which makes following the flow

https://www.blogger.com/profile/01904428627732530957
http://bits-please.blogspot.com/2016/02/unlocking-motorola-bootloader.html?showComment=1455163670946#c752939151005362634
https://www.blogger.com/profile/08922879700344159790
http://bits-please.blogspot.com/2016/02/unlocking-motorola-bootloader.html?showComment=1455164040291#c364340538289840350
https://www.blogger.com/profile/00867710965331025912
http://bits-please.blogspot.com/2016/02/unlocking-motorola-bootloader.html?showComment=1455194018803#c8470115582954995802
https://www.blogger.com/profile/00867710965331025912
http://bits-please.blogspot.com/2016/02/unlocking-motorola-bootloader.html?showComment=1455195575776#c7362361016818746413
https://www.blogger.com/profile/00867710965331025912
http://bits-please.blogspot.com/2016/02/unlocking-motorola-bootloader.html?showComment=1455198409103#c6107852229307182672
https://www.blogger.com/profile/00867710965331025912
http://bits-please.blogspot.com/2016/02/unlocking-motorola-bootloader.html?showComment=1455200109748#c811512158645678420

Reply

Replies

Reply

Replies

Reply

7225/plain/bootable/bootloader/lk/platform/msm_shared/mmc.c) which makes following the flow
easier.

Anyway, these DWORDs are read in from the MMC - in the version of aboot that I analysed
(http://forum.xda-developers.com/attachment.php?attachmentid=3437011&d=1439413035), they
are fetched in from: (byte)0xF967AA4+0x4A4, (DWORD)0xF967AA4+0x4B8.

If you want to play around with the TrustZone exploit and read those addresses, we can try and
figure out what they are. In any case, we can always call the MMC flashing code to overwrite them,
and then supply *any* signed token to unlock.

Just so you know, though, this is quite dangerous - if anything else depends on these values we
may brick the device.

4. Daniel Lenski 11/02/2016, 10:43

This is impressive :) I'm tempted to puck up a cheap Moto E LTE just to try and see if it works there too!
Reply

1. 1. Sean Beaupre 11/02/2016, 18:50

Where are you finding a Moto E using MSM8974/SD810?

--beaups

5. terrajoe 11/02/2016, 14:39

Thanks for the interesting articles!

Got a small question - what do you use to get comments with ARM opcodes description?
Reply

1. 1. laginimaineb 11/02/2016,
15:04Thanks for reading!

The comments are a builtin feature in IDA (Options->General->Disassembly->Comments).

P.S - I usually don't use this (as I find the clutter a little annoying), but for the purpose of the blog
posts I enable it so that it'll be easier for people without an ARM background to read.

6. Sean Beaupre 11/02/2016, 18:54

https://www.blogger.com/profile/13534708736983451094
http://bits-please.blogspot.com/2016/02/unlocking-motorola-bootloader.html?showComment=1455180226014#c6469031450434723515
https://www.blogger.com/profile/14904754530873949012
http://bits-please.blogspot.com/2016/02/unlocking-motorola-bootloader.html?showComment=1455209428287#c2300289891614288093
http://terrajoe.livejournal.com/
http://bits-please.blogspot.com/2016/02/unlocking-motorola-bootloader.html?showComment=1455194352182#c8842586270828037190
https://www.blogger.com/profile/00867710965331025912
http://bits-please.blogspot.com/2016/02/unlocking-motorola-bootloader.html?showComment=1455195877883#c3660821448218160938
https://www.blogger.com/profile/14904754530873949012
http://bits-please.blogspot.com/2016/02/unlocking-motorola-bootloader.html?showComment=1455209650171#c6530981842170308763

Replies

Reply

Replies

2.

Why would your C exploit need cleaned up, I can do it in 4 lines of code :P Nice writeup, as always.

--beaups
Reply

1. 1. laginimaineb 11/02/2016,
20:10Right now I have a C file with all my TZ experiments and *lots* of irrelevant code, I wouldn't wish it

on anyone to try and figure out what's going on there ;)

7. newsham 13/02/2016, 08:57

Is there an easy way to remap ram over the qfuse range for experimentation purposes?
Or alternately a central place to patch a read-qfuse function?
To make it less dangerous to explore the different fuse settings...
Reply

1. laginimaineb 13/02/2016,
18:26

You can overwrite the read-QFuse function by setting the DACR and overwriting the TrustZone function
I detailed above, such as tzbsp_qfprom_read_row (see the TrustZone exploit post for more info), but
this won't be of much help...

Since a lot of these QFuses are checked during the boot process by components which are loaded way
before the HLOS is executed (such as aboot, SBL and PBL), hooking this function won't let you observe
the behaviours which would be exhibited by those components.

That said, there may be an option to overwrite the function and then attempt to jump directly into the
SBL3 or aboot - I've never tried to do this, but in practice there should be some support for a "warm
boot", which means this might work. Of course, in practice this is probably a lot harder, since
SBL3/aboot may depend a lot on the current state which should be set by previous stages of the boot-
chain, and directly handing over control to them might have unpredictable results.

https://www.blogger.com/profile/00867710965331025912
http://bits-please.blogspot.com/2016/02/unlocking-motorola-bootloader.html?showComment=1455214219620#c1518146988278528418
https://www.blogger.com/profile/10474447258819808743
http://bits-please.blogspot.com/2016/02/unlocking-motorola-bootloader.html?showComment=1455346675822#c8046715944655868619
https://www.blogger.com/profile/00867710965331025912
http://bits-please.blogspot.com/2016/02/unlocking-motorola-bootloader.html?showComment=1455380789586#c6539007136915124191

	Unlocking the Motorola Bootloader (Feb, 2016)
	WHY MOTOROLA?
	SETTING THE STAGE
	GETTING STARTED
	MUCH ADO ABOOT NOTHING
	ENTER STAGE LEFT, TRUSTZONE
	QFUSES
	PUTTING IT ALL TOGETHER
	DIY QFUSES
	TRYING IT OUT
	FINAL THOUGHTS
	17 comments:

