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FE ImageNet-1k HHE 5 15X 5 1832 https://blog.csdn.net/qq_39377134/article/details/103128970
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A RKT ResNet-50 7E ImageNet FHISLIOHT, HATHE, SLRHIELE D 512 ImageNet-240 #1 ImageNet-1k, HHRIH &
JEER—ANFE.

BT RERE LB RIE, $—kEK, R freeze alllayer exclude last layer, E & HANIRINE T 7E ImageNet-1k LTI 2R
R, spIGAE R R train_acc = 93.8, val_acc = 93.44, test_acc = 93.48.

B RER (X — RS RN E A TN AR R INEEE — KR TR, JRRE R BRAVEEE — KIS last layerZ B LT
WA, AR EE unfreeze layerd fl fc layer, XFESHATINEEIZMNGEE, XEEER—T, MARNIE ZIRRGR
BEB—WINZH 1/10), K& freeze all layer exclude layer4 and fc layer(H 5t &2 b # 1) last layer), S2I4E B R train_acc =
95.24, val_acc=93.6, test acc=93.7. XfLEFE —RME ZIRFIELILER, WATATLURKIAE val 7 test L3R\ T LVFRA, H
M train ATLAE A BEMAET .

B ZRR (X — IR LB T SRR B I8 28 — IR FF TR ARY), 2 freeze all layer exclude layer3 and layer4 and fc
layer, S2G%E B R: train_acc = 95.81, val_acc = 93.67, test_acc = 93.9, XfEL#E =KL ME — LY, ALK, unfreeze B
ZHIMEZE, RISHUIRAHERE, ERERHUAKSIE,

FEHE, REREHBEE, MAXEEETUSFEENE, EHUNRZER, BRIEROBEELES THRERLER, T4
AT EEE R, BRAOTEEMA R R4/ train_acc 1 val_acc 2 [A1f] gap.

B )5 B ¥i— F 7 ImageNet-1k £ acc = 87.43, Xftt ImageNet-240 il ImageNet-1k ERIZE R, WATAT LRI, HAEE
ImageNet-1k L4 pre-train, 45 transfer ] ImageNet-240 I, W LABHRIRABEIZE, AIHEEZFE T —4 domain, &
IFEEE L KERRF domain _EJIR transfer KRR S 1T .

o FHE BRI LR, BRI X ERIRE, Big Transfer (BiT): General Visual Representation Learning, % X7
ImageNet-1k(1.28M 3K B /), ImageNet-21k(14.2M #K & /), JFT-300M(300M 3K ), EoBIski, KMHBEMA, BRR
I¥, WILLFE papers with code _E/J benckmark # % ResNet-50 7E ImageNet-1k /] test_acc =77.15, {HRTE JFT-300M _Lfif 5
25, B transfer 1)iE, FTLLAZR] test_acc = 87.54. X B N AREAREME, KAHETLE, RERRXREBETHIEE. - . -
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import torch

from utils.eval import calc_acc

from utils.utils import setup_seed, get_dataloader, show_img, predict_batch, set_gpu
from utils.model import define_model, define_optim, start_train

from torch import nn

# WEWRERTI
device = set_gpu('e, 1')

# REEHSR T, FERTER
setup_seed(20)

# BRI

train_batch = 160

test_batch = 160

EPOCH = 200

trainloader, testloader, classes = get_dataloader(train_batch, test_batch)

# SHIGER—MbatchB R #TRS

show_img(trainloader, classes, batch_size=train_batch)

# MM E X

net = define_model(classes)
net = nn.DataParallel(net)
net.to(device)

# B SRR R B 2
criterion, optimizer = define_optim(net)
net.load_state_dict(torch.load('resnetV1-50-9519-93.pth"))

# JREBRRAL I Zx

start_train(net, EPOCH, trainloader, device, optimizer, criterion, testloader)

# RSN RE L HAT P
net.load_state_dict(torch.load('resnet50Cls.pth"))
print(calc_acc(net, testloader, device))

# HATHERL T

predict_batch(net, testloader, classes, test_batch, device)

SERAAIL I, AR Github T : https://github.com/MaoXianXin/PycharmProjects

M7 W SR Deep Residual Learning for Image Recognition, ¥ EARRMZ INVE, AR AL X ) 5 .
Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that
are substantially deeper than those used previously.

R I GRR B M 4 R INXER), HRRBERIE AR, %5 8 SR B R 5 S BN R % )

We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning
unreferenced functions.

ff i X B ARSI N EEEE .
The depth of representations is of central importance for many visual recognition tasks.

Deep networks naturally integrate low/mid/high-level features and classifiers in an end-to-end multi-layer fashion, and the “levels” of
features can be enriched by the number of stacked layers(depth).



fEE: X TARSUIRAESS KU, MERRERIEEEER, "2 HREE] low/mid/high Z/Z R KIHRFE .

Driven by the significance of depth, a question arises: Is learning better networks as easy as stacking more layers ? An obstacle to
answering this question was the notorious problem of vanishing/exploding gradients, which hamper convergence from the
beginning. This problem, however, has been largely addressed by normalized initialization and intermediate normalization layers,
which enable networks with tens of layers to start converging for stochastic gradient descent(SGD) with back-propagation.

R XTI UER B IR BERRR, ISR PR RE R BaF 2 B, X BB, sURSEHERARIE, xR AR E
Emr Ui IE A 46 A DA B H 18] IE 4L B AR R o

When deeper networks are able to start converging, a degradation problem has been exposed: with the network depth increasing,
accuracy gets saturated and then degrades rapidly. Unexpectedly, such degradation is not caused by overfitting, and adding more
layers to a suitably deep model leads to higher training error.

The degradation(of training accuracy) indicates that not all systems are similarly easy to optimize.

FERE: FERR IR T LS BB L R AR NE 2 J5, BRATHIM AT LIE R WS T, ([ERFEE MG, I T AR RN U L kiR
W, I BRXA AR S E R . AT DUXHEEME, T MEIRENME, WRRERXANEA 2 BB
BH, BAMRHERAREB LRI, RiTSF2ERNIRE.

We hypothesize that it is easier to optimize the residual mapping than to optimize the original, unreferenced mapping.
AR X MBI AR X R IR SO SR, R residual mapping B2 .

To the extreme, if an identity mapping were optimal, it would be easier to push the residual to zero than to fit an identity mapping by
a stack of nonlinear layers.

BeR: A RIS, FEHARIE. BRTKEBESR, RSN T REERNMNE L ERNEBEROIELREEERS

identity

Figure 2. Residual learning: a building block.

In our case, the shortcut connections simply perform identity mapping, and their outputs are added to the outputs of the stacked
layers. Identity shortcut connections add neither extra parameter nor computational complexity. The entire network can still be
trained end-to-end by SGD with backpropagation, and can be easily implemented using common libraries.

L AR 2R identity mapping BEA MBS SE, AT HEEE.

We evaluate our method on the ImageNet 2012 classification dataset that consists of 1000 classes. The models are trained on the
1.28 million training images, and evaluated on the 50k validation images. We also obtain a final result on the 100k test images,
reported by the test server.

fi#ik: ResNet # R R 7E ImageNet 2012, H LAFR A ImageNet-1k i LI, H 1.28M KB -, 50k FRIGIER A, L
K 100k 75 A o

we also note that the 18-layer plain/residual nets are comparably accurate, but the 18-layer ResNet converges faster.
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Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

fi#z: N BB, #520T DAE H ResNet-18 ZEAT 4G BOIt S BE - T+ Plain-18.

Bottleneck Architectures: a stack of 3 layers, 1x1, 3x3, and 1x1 convolutions, where the 1x1 layers are responsible for reducing and
then increasing(restoring) dimensions leaving the 3x3 layer a bottleneck with smaller input/output dimensions.

The parameter-free identity shortcuts are particularly important for the bottleneck architectures. If the identity shortcut is replaced
with projection, one can show that the time complexity and model size are doubled, as the shortcut is connected to the two high-
dimensional ends. So identity shortcuts lead to more efficient models for the bottleneck designs.

fiEik: BAb UL 2 Bottleneck I45H), WA 1x1, A& 3x3, R FK dimension X, H[E[ dimension 7, FIFE S
HEMTHEE

The 50/101/152-layer ResNets are more accurate than the 34-layer ones by considerable margins.

model top-1 err. top-5 err.
VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38
plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 75 6.05
ResNet-152 21.43 571

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B
that only uses projections for increasing dimensions.

fifik: M IR SE AT DA H 3R 50/101/152 )2 ) ResNet #ERI R L 34 2K .

We also notice that the deeper ResNet has smaller magnitudes of responses, as evidenced by the comparisons among ResNet-
20, 56, and 110. When there are more layers, an individual layer of ResNets tends to modify the signal less.
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Figure 7. Standard deviations (std) of layer responses on CIFAR-
10. The responses are the outputs of each 3x3 layer, after BN and
before nonlinearity. Top: the layers are shown in their original
order. Bottom: the responses are ranked in descending order.
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