
TUNNA
A tool designed to bypass firewall restrictions

on remote webservers

By:

Rodrigo Marcos

Nikos Vassakis

Web Applications

What a User sees

Web Applications

What a Penetration Tester sees

80/443

Firewall

A firewall is a software or
hardware-based network security
system that controls the incoming
and outgoing network traffic by
analyzing the data packets and
determining whether they should
be allowed through or not, based
on applied rule set.

DMZ

Web Application Infrastructure
What a Penetration Tester can “assume” ?

The Web Server will have other services running

80/443

RDP

SSH

DB

Etc.

DMZ

Web Application Infrastructure
The Web Server might be connected to other hosts

80/443

Web Application Infrastructure
Maybe even connected to the local network

80/443

Internal Network

The Goal!
“Don’t worry, it happens to a lot of guys (and girls)”

Magic!

Post Exploitation 101

Steps:

1.Upload meterpreter

2.Run meterpreter

3.???

4.Profit

Post Exploitation

A (*well configured*) firewall,
would block both incoming and
outgoing connections to the
internet from the webserver.

Post Exploitation

There is however one connection the firewall can’t block

And this is to the webserver on ports 80 and/or 443 *

*typically

This will always be allowed

Idea

Use a web application to establish
connections on the other end of the
firewall

The theory

Meterpreter Handler

Meterpreter Shell

What we want to achieve

DMZ

80/443

RDP

SSH

services

Etc.

Internal Network

Tunna WebShell

Using Tunna

Once the “Tunna WebShell”
has been uploaded to the
webserver, the user can
connect to any port the host
can access on the internal
network.

*Slide added becausefor the picture

How Tunna works

HTTP

Application Data RDP

Application Data

Application Data

Tunna Webshell

Detailed View

Tunna Client RDP

Initial Connection

Send Cookie

Connect to [IP:port]
Establishes Connection

Received Data

Received Data

Get Data

Get Data

No Data

Send Data (Receive Response)

Send Data (Receive Response)

Tunna Webshell

Tunna RDP Demo

Tunna RDP Demo

HTTP tunneling with Tunna - webshell connecting to remote RDP

https://www.youtube.com/watch?v=Kqb1PGrkzVw

Making Things Easy

Tunna Metasploit Module:
• Creates a meterpreter listener that listens on a local port
• Uses “Tunna WebShell” to transfer meterpreter to the remote
server,
• Executes it and
• Connects to it

Metasploit Demo

Metasploit Demo

HTTP tunneling with Tunna - metasploit module example run

https://www.youtube.com/watch?v=-Svxx7OVfQY

Tunna Version 1.1
Opening a new can of Tunna

Breaking Out Tunna

The Problem:

Internal firewall blocks certain services and/or sites

Internal Network

Breaking Out Tunna
Typically Internal firewalls block traffic based on the service or
IP/DNS name of the remote host

Tunna can be used to pivot the connection to the remote host

Internal Network
Tunna WebServer

Breaking Out Tunna

To ease this scenario a standalone “Tunna webserver” was
developed. A webserver like Apache or IIS is not required.

Proxy support was also added to “Tunna Client” for situations
where an internal proxy gateway is present. Tunna will use the
internal proxy the same way the browser does and will channel
all traffic through the proxy.

Limitations
The first version of Tunna had one limitation.

• It could only tunnel a single connection to a single remote service.

• A new Tunna instance was required for a second connection.

• However, third party software

like SSH or a meterpreter shell

could be used along with Tunna

to tunnel multiple connections

Socking Tunna

Due to popular demand, the new

version, Tunna (v1.1a) can be set

up to be a local SOCKS proxy

Only SOCKS version 4a* is supported

but works great for most scenarios!

*Note: SOCKS BIND method is not yet supported

Split SOCKS 4a Proxy

The local applications connects to the local “Proxy Server”
everything is transferred to the remote “Proxy Server” over a
single connection

It works by tracking every connection but its transparent to the
applications using it. It’s just like using a SOCKS 4a proxy.

L port

L port

L port

L port

Local
Socks Proxy

R port

R port

R port

R port

Remote
Socks Proxy

SOCKS Implementation

•The applications connect to the local “Socks Proxy”

•Everything is forwarded to “Tunna”,

•Is transferred to the remote “Tunna Webserver” and

•Forwarded to the “Remote Socks Proxy”

Local
Socks Proxy

Remote
Socks Proxy

Tunna Client

HTTP Tunnel

Tunna WebServer

Tunna SOCKS Demo

Tunna SOCKS Demo

HTTP tunneling with Tunna v1.1a using proxychains

https://www.youtube.com/watch?v=tyWTicaUD1k

Secondary Additions
Tunna Binaries for Windows are included in the new version (no
need for python to be installed).
•Tunna Client executable
•Tunna Server executable

Settings.py file has been added to ease setting up the client

*Note: All Tunna client binaries or python scripts can be used with all the different webshells or the Tunna
Webserver (binary or python script) the same way.

 Word of Caution !

Tunna generates a massive overhead for every TCP packet

Consequently, large amounts of traffic translate to large
amounts of HTTP request.

This can lead to a Denial of Service condition where the
webserver/network devices etc. will not be able to cope with all
the requests*.

It is also recommended for Tunna webshells not to be used as
a permanent solution.

Some functionality is still experimental.

*Tunna standalone webserver is not affected at the same level.

Future Plans

1.Add Authentication to Tunna

2.Add support for SOCKS v5

3.???

4.World Domination

Tunna SUCKS!

… but it is still in development and

is getting better with every release!

Thank you for listening!

…and watch this space:

http://www.secforce.com/blog/

*No animals were harmed during the making of this tool

