
Secure SDLC Practices in
Smart Contracts Development
Speaker: Pavlo Radchuk
@rdchksec

2018

AppSec Engineer with Masters degree (several of experience)

Smart Contract Audit Team Lead

My team performs 7-10 audits per month

About me

Conducting different researches for new techniques, vulns etc.

Analyzing competitors reports – they are quite different

See all the problems from inside …

What do my team do

There are some best practices for Ethereum Solidity, but none for EOS,
NEO, NEM, etc.

Audit Problems

No compliances (e.g. PCI DSS)
No certifications (e.g. OSCP)

No industry accepted standards and guidelines (e.g. OWASP testing guide)

Audit says smart contracts is secure != Secure Smart Contract

Despite all the drawbacks – an audit is still the best
solution for smart contract security

Audits alone are not enough – so what can be done?

What can help with Smart Contracts Security

SDLC is a term used in systems engineering,
information systems and software engineering to
describe a process for planning, creating, testing,

and deploying an information system*

* https://www.cms.gov/Research-Statistics-Data-and-Systems/CMS-Information-Technology/XLC/Downloads/SelectingDevelopmentApproach.pdf

Secure SDLC
Software Development

Lifecycle

What do web guys
do for security?

Security is achieved
by processes

Classic Web Development Cycle

Typical Smart Contract Development Flow

Smart contracts are immutable after deployment

Web vs Smart Contracts

Web Smart Contracts

• Some Code Run on Servers

• Code can be changed

• Some Code Run on Nodes

• If you use proxies – code can be changed (for instance, zos

for Solidity)

Development process contains – requirements, programming, testing, deployment, maintenance

• Existing development guides, pentesting methodologies

and compliances

• Some unformalized best practices

How to "buidl" a secure smart contract?

Process

SDLC Practices

1. Threat Assessment
2. Security Requirements
3. Developer Education
4. Private Key Management

5. QA Testing
6. Security Testing
7. Compliance

1. Threat Assessment

What ifs:

• What if the only copy of private key is lost
• What if Ethereum gets hacked/DoSed etc. – can you fully rely on a third party?
• What if your token/wallet/etc. gets hacked

Understanding threats:

You need to understand the risks and
accept/mitigate/transfer them

2. Security Requirements

One of the most widespread bugs – absence of
security modifiers

All Security modifiers should be defined

Particularly, all function with all modifiers
predefined and documented

https://github.com/trailofbits/not-so-smart-contracts/blob/master/unprotected_function/Unprotected.sol

3. Developer Education

Examples for Solidity:
• Reentrancy
• Unchecked math
• Timestamp Dependence
• Unchecked external call

Developers should know common vulnerabilities/attacks:

4. Private Key Management

Contract management architecture –operator and other management
accounts; Multisig wallets

How and where PKs are stored and used?

5. QA Testing

• Fixes during development

• Proxies and operators for deployed contracts

Unit and other
QA tests

How fixes
should be done

Testing against security requirements
Audit
One more audit
Bug Bounty
*https://blog.hackenproof.com/industry-news/smart-contracts-bug-hunting/

6. Security Testing

7. Compliance

Legal compliance – KYC for anti money laundering etc.

Technical compliance – security requirements (like PCI DSS)

Listing requirements – security audits

Audits are a must, but not enough

Security needs a process

Developers need our help

Conclusion

Web security SDLC practices are applicable for Smart Contracts

We develop best practices/recommendations

Contact me if you want to participate

Conclusion

Contacts
Speaker: Pavlo Radchuk
Twitter: @rdchksec
WeChat: @rdchksec
Email: p.radchuk@hacken.io

