
Bio	

About Me

With VN Security since year
2009

Almost Every
Weekend

>  CTF player

>  Weekend gamer

Running zxandora.com
project.

Most of the time

>  Soon

>  Very Soon

>  Brand New Online
Sandbox

Hack in The Box Crew

Once a year

>  Good friends

>  CTF CTF and CTF

About Me

>  2008, Hack In The Box CTF Winner

>  2010, Hack In The Box Speaker, Malaysia

>  2012, Codegate Speaker, Korea

>  2015, VXRL Speaker, Hong Kong

>  2015, HITCON CTF, Prequal Top 10

>  2016, Codegate CTF, Prequal Top 5

>  2016, Qcon Speaker, Beijing

>  OSX, Local Privilege Escalation

>  Code commit for metasploit 3

>  GDB Bug hunting

>  Metasploit module

>  Linux Randomization Bypass

>  http://www.githiub.com/xwings/tuya

>  微博: @kaijern

vnsecurity.net	

Introduction

>  Active CTF Player (CLGT)

>  Active speaker at conferences

>  Blackhat USA

>  Tetcon

>  Hack In The Box

>  Xcon

>  Our Tools

>  PEDA

>  Unicorn/ Capstone/ Keystone

>  Xandora

>  OllyDbg, Catcha!

>  ROPEME

>  Security Researcher

>  Active speaker at conferences

>  Blackhat USA

>  Syscan

>  Hack In The Box

>  Xcon

>  Research Topics

>  Emulators

>  Virtualization

>  Binary Analysis

>  Tools for Malware Analysis

VN Security

Nguyen Anh Quynh

>  Nations

>  Vietnamese

>  Malaysian

>  Singaporean

When gdb meets peda

GDB PEDA

Why KCON	

Fake Websites

What Are These Things	

What Is Disassembler

  From binary to assembly
code

  Core part of all binary

analysis/ reverse
engineering / debugger and
exploit development

  Disassembly framework

(engine/library) is a lower
layer in stack of architecture

Example

§  01D8 = ADD EAX,EBX (x86)
§  1169 = STR R1,[R2] (ARM’s Thumb)

Assembler

Engine

Binary
Analysis Debugger Exploit Development

CPU

Emulator Engine

Disassembler

Engine

What Is Emulator

  Software only CPU Emulator

  Core focus on CPU

operations.

  Design with no machine
devices

  Safe emulation environment

  Where else can we see CPU
emulator. Yes, Antivirus

Binary
Analysis Debugger Exploit Development

Assembler

Engine

Binary
Analysis Debugger Exploit Development

CPU

Emulator Engine

Disassembler

Engine

Example

§  01D1 = add eax,ebx (x86)

§  Load eax & ebx register
§  Add value of eax & ebx then copy the result to eax
§  Update flag OF, SF, ZF, AF, CF, PF accordingly

What Is Assembler

  From assembly to machine
code

  Support high level concepts

such as macro, functions
and etc.

  Dynamic machine code

generation

Example

§  ADD EAX,EBX = 01D8 (x86)
§  STR R1,[R2] = 1169 (ARM’s Thumb)

Binary
Analysis Debugger Exploit Development

Assembler

Engine

Binary
Analysis Debugger Exploit Development

CPU

Emulator Engine

Disassembler

Engine

Where are we currently	

Showcase

>  CEnigma

>  Unicorn

>  CEbot

>  Camal

>  Radare2

>  Pyew

>  WinAppDbg

>  PowerSploit

>  MachOview

>  RopShell

>  ROPgadget

>  Frida

>  The-Backdoor-Factory

>  Cuckoo

>  Cerbero Profiler

>  CryptoShark

>  Ropper

>  Snowman

>  X86dbg

>  Concolica

>  Memtools Vita

>  BARF

>  rp++

>  Binwalk

>  MPRESS dumper

>  Xipiter Toolkit

>  Sonare

>  PyDA

>  Qira

>  Rekall

>  Inficere

>  Pwntools

>  Bokken

>  Webkitties

>  Malware_config_parsers

>  Nightmare

>  Catfish

>  JSoS-Module-Dump

>  Vitasploit

>  PowerShellArsenal

>  PyReil

>  ARMSCGen

>  Shwass

>  Nrop

>  Illdb-capstone-arm

>  Capstone-js

>  ELF Unstrip Tool

>  Binjitsu

>  Rop-tool

>  JitAsm

>  OllyCapstone

>  PackerId

>  Volatility Plugins

>  Pwndbg

>  Lisa.py

>  Many Other More

Showcase

>  UniDOS: Microsoft DOS emulator.

>  Radare2: Unix-like reverse engineering framework and commandline tools.

>  Usercorn: User-space system emulator.

>  Unicorn-decoder: A shellcode decoder that can dump self-modifying-code.

>  Univm: A plugin for x64dbg for x86 emulation.

>  PyAna: Analyzing Windows shellcode.

>  GEF: GDB Enhanced Features.

>  Pwndbg: A Python plugin of GDB to assist exploit development.

>  Eli.Decode: Decode obfuscated shellcodes.

>  IdaEmu: an IDA Pro Plugin for code emulation.

>  Roper: build ROP-chain attacks on a target binary using genetic algorithms.

>  Sk3wlDbg: A plugin for IDA Pro for machine code emulation.

>  Angr: A framework for static & dynamic concolic (symbolic) analysis.

>  Cemu: Cheap EMUlator based on Keystone and Unicorn engines.

>  ROPMEMU: Analyze ROP-based exploitation.

>  BroIDS_Unicorn: Plugin to detect shellcode on Bro IDS with Unicorn.

>  UniAna: Analysis PE file or Shellcode (Only Windows x86).

>  ARMSCGen: ARM Shellcode Generator.

>  TinyAntivirus: Open source Antivirus engine designed for detecting & disinfecting
polymorphic virus.

>  Patchkit: A powerful binary patching toolkit.

Showcase

>  Keypatch: IDA Pro plugin for code assembling & binary patching.

>  Radare2: Unix-like reverse engineering framework and commandline tools.

>  GEF: GDB Enhanced Features.

>  Ropper: Rop gadget and binary information tool.

>  Cemu: Cheap EMUlator based on Keystone and Unicorn engines.

>  Pwnypack: Certified Edible Dinosaurs official CTF toolkit.

>  Keystone.JS: Emscripten-port of Keystone for JavaScript.

>  Usercorn: Versatile kernel+system+userspace emulator.

>  x64dbg: An open-source x64/x32 debugger for windows.

>  Liberation: a next generation code injection library for iOS cheaters
everywhere.

>  Strongdb: GDB plugin for Android debugging.

>  AssemblyBot: Telegram bot for assembling and disassembling on-the-go.

>  demovfuscator: Deobfuscator for movfuscated binaries.

>  Dash: A simple web based tool for working with assembly language.

>  ARMSCGen: ARM Shellcode Generator.

>  Asm_Ops: Assembler for IDA Pro (IDA Plugin).

>  Binch: A lightweight ELF binary patch tool.

>  Metame: Metamorphic code engine for arbitrary executables.

>  Patchkit: A powerful binary patching toolkit.

>  Pymetamorph: Metamorphic engine in Python for Windows executables.

Born of The Trinity	

Binary	
Assembly	

Fundamental Frameworks for Reversing

Capstone   Components for a
complete RE framework

  Interchange between

assembler and
disassembler

  A full CPU emulator

always help when
comes with obfuscated
code

Keystone

Unicorn

Capstone Engine	
NGUYEN Anh Quynh <aquynh -at- gmail.com>

http://www.capstone-engine.org

What’s Wrong with Current Disassembler

  Nothing works even up until 2013 (First release of Capstone Engine)
  Looks like no one take charge
  Industry stays in the dark side

What do we need ?

  Multiple archs: x86, ARM+
ARM64 + Mips + PPC and
more

  Multiple platform: Windows,

Linux, OSX and more

  Multiple binding: Python,

Ruby, Java, C# and more

  Clean, simple, intuitive &
architecture-neutral API

  Provide break-down details on

instructions

  Friendly license: Not GPL

Lots of Work !

  Multiple archs: x86, ARM

  Actively maintained & update

within latest arch’s change

  Multiple platform: Windows,

Linux

  Understanding opcode, Intel
x86 it self with 1500++
documented instructions

  Support python and ruby as
binding languages

  Single man show

  Target finish within 12 months

A Good Disassembler

  Multiple archs: x86, ARM

  Actively maintained & update

within latest arch’s change

  Multiple platform: Windows,

Linux

  Support python and ruby as
binding languages

  Friendly license: BSD

  Easy to setup

  Open source project compiler
  Sets of modules for machine code representing, compiling, optimizing
  Backed by many major players: AMD, Apple, Google, Intel, IBM, ARM, Imgtec, Nvidia,

Qualcomm, Samsung, etc
  Incredibly huge (compiler) community around.

Not Reinventing the Wheel

Fork from LLVM

  Multiple architectures ready
  In-disassembler (MC module)

  Only, Only and Only build for LLVM
  actively maintained by the original vendor from the arch building company (eg, x86 from intel)

  Very actively maintained & updated by a huge community

Are We Done

>  Cannot just reuse MC as-is without huge efforts.

>  LLVM code is in C++, but we want C code.

>  Code mixed like spaghetti with lots of LLVM
layers, not easy to take out

>  Need to build instruction breakdown-details
ourselves.

>  Expose semantics to the API.

>  Not designed to be thread-safe.

>  Poor Windows support.

>  Need to build all bindings ourselves.

>  Keep up with upstream code once forking LLVM to
maintain ourselves.

Issues

>  Fork LLVM but must remove everything we do not
need

>  Replicated LLVM’s MC

>  Build around MC and not changing MC

>  Replace C++ with C

>  Extend LLVM’s MC

>  Isolate some global variable to make sure
thread-safe

>  Semantics information from TD file from LLVM

>  cs_inn structure

>  Keep all information and group nicely

>  Make sure API are arch-independent

Solutions

Capstone is not LLVM

 	

>  Zero dependency

>  Compact in size

>  More than assembly code

>  Thread-safe design

>  Able to embed into restricted firmware OS/
Environments

>  Malware resistance (x86)

>  Optimized for reverse engineers

>  More hardware mode supported:- Big-Endian for
ARM and ARM64

>  More Instructions supported: 3DNow (x86)

More Superiors

>  Cannot always rely on LLVM to fix bugs

>  Disassembler is still conferred seconds-
class LLVM, especially if does not affect
code generation

>  May refuse to fix bugs if LLVM backed
does not generate them (tricky x86 code)

>  But handle all comer case properly is Capstone
first priority

>  Handle all x86 malware ticks we aware of

>  LLVM could not care less

More Robust

Demo

 	

Showcase: x64dbg

Unicorn Engine
NGUYEN Anh Quynh <aquynh -at- gmail.com>

DANG Hoang Vu <danghvu -at- gmail.com>

http://www.unicorn-engine.org

What’s Wrong with Current Emulator

  Nothing works even up until 2015 (First release of Unicorn Engine)
  Limited bindings
  Limited functions, limited architecture

What Do We Need ?

  Multiple archs: x86, x86_64,
ARM+ ARM64 + Mips + PPC

  Multiple platform: Windows,
Linux, OSX, Android and more

  Multiple binding: Python,

Ruby, Java, C# and more

  Pure C implementation

  Latest and updated

architecture

  With JIT compiler technique

  Instrumentation eg. F7, F8

Lots of Work !

  Multiple archs: x86, ARM

  Actively maintained & update

within latest arch’s change

  Multiple platform: Windows,

Linux

  Understanding opcode, Intel
x86 it self with 1500++
documented instructions

  Support python and ruby as
binding languages

  Single man show

  Target finish within 12 months

A Good Emulator

  Multiple archs: x86, x86_64,
ARM, ARM64, Mips and more

  Actively maintained & update

within latest arch’s change

  Multiple platform: Windows,

Linux, OSX, Android and more

  Code in pure C

  Support python and ruby as

binding languages

  JIT compiler technique

  Instrumentation at various

level
  Single step
  Instruction
  Memory Access

  Open source project on system emulator
  Very huge community and highly active
  Multiple architecture: x86, ARM, ARM64, Mips, PowerPC, Sparc, etc (18 architectures)
  Multiple platform: *nix and Windows

Not Reinventing the Wheel

Fork from QEMU

  Support all kind of architectures and very updated
  Already implemented in pure C, so easy to implement Unicorn core on top
  Already supported JIT in CPU emulation, optimization on of of JIT
  Are we done ?

Are We Done

>  Not just emulate CPU, but also device models &
ROM/BIOS to fully emulate physical machines

>  Qemu codebase is huge and mixed like spaghetti

>  Difficult to read, as contributed by many different
people

Issues 1

>  Keep only CPU emulation code & remove everything
else (devices, ROM/BIOS, migration, etc)

>  Keep supported subsystems like Qobject, Qom

>  Rewrites some components but keep CPU emulation
code intact (so easy to sync with Qemu in future)

Solutions

>  Set of emulators for individual architecture

>  Independently built at compile time

>  All archs code share a lot of internal data
structures and global variables

>  Unicorn wants a single emulator that supports all
archs

Issues 2 Solutions

>  Isolated common variables & structures

>  Ensured thread-safe by design

>  Refactored to allow multiple instances of Unicorn at
the same time Modified the build system to support
multiple archs on demand

Are We Done

>  Instrumentation for static compilation only

>  JIT optimizes for performance with lots of fast-path
tricks, making code instrumenting extremely hard

Issues 3

>  Build dynamic fine-grained instrumentation layer from
scratch Support various levels of instrumentation

>  Single-step or on particular instruction (TCG
level)

>  Instrumentation of memory accesses (TLB
level)

>  Dynamically read and write register

>  Handle exception, interrupt, syscall (arch-
level) through user provided callback.

Solutions

>  Objects is open (malloc) without closing (freeing)
properly everywhere

>  Fine for a tool, but unacceptable for a framework

Issues 4 Solutions

>  Find and fix all the memory leak issues

>  Refactor various subsystems to keep track and
cleanup dangling pointers

Unicorn Engine is not QEMU

  Independent framework
  Much more compact in size, lightweight in memory
  Thread-safe with multiple architectures supported in a single binary Provide interface for

dynamic instrumentation
  More resistant to exploitation (more secure)

  CPU emulation component is never exploited!
  Easy to test and fuzz as an API.

Demo

 	 	

Showcase: box.py

Keystone Engine	
NGUYEN Anh Quynh <aquynh -at- gmail.com>

http://www.keystone-engine.org

What’s Wrong with Assembler

  Nothing is up to our standard, even in 2016!
Yasm: X86 only, no longer updated

  Intel XED: X86 only, miss many instructions & closed-source
  Use assembler to generate object files
  Other important archs: Arm, Arm64, Mips, PPC, Sparc, etc?

What do we need?

  Multiple archs: x86, ARM+
ARM64 + Mips + PPC and
more

  Multiple platform: Windows,

Linux, OSX and more

  Multiple binding: Python,

Ruby, Java, C# and more

  Clean, simple, intuitive &
architecture-neutral API

  Provide break-down details on

instructions

  Friendly license: BSD

Lots of Work !

  Multiple archs: x86, ARM

  Actively maintained & update

within latest arch’s change

  Multiple platform: Windows,

Linux

  Understanding opcode, Intel
x86 it self with 1500++
documented instructions

  Support python and ruby as
binding languages

  Single man show

  Target finish within 12 months

A Good Assembler

  Multiple archs: x86, ARM

  Actively maintained & update

within latest arch’s change

  Multiple platform: Windows,

Linux

  Support python and ruby as
binding languages

  Friendly license (BSD)

  Easy to setup

Not Reinventing the Wheel

  Open source project compiler
  Sets of modules for machine code representing, compiling, optimizing
  Backed by many major players: AMD, Apple, Google, Intel, IBM, ARM, Imgtec, Nvidia,

Qualcomm, Samsung, etc
  Incredibly huge (compiler) community around.

Fork from LLVM

  Multiple architectures ready
  In-build assembler (MC module)

  Only, Only and Only build for LLVM
  actively maintained

  Very actively maintained & updated by a huge community

Are We Done

>  LLVM not just assembler, but also disassembler,
bitcode, InstPrinter, Linker Optimization, etc

>  LLVM codebase is huge and mixed like spaghetti

Issue 1

>  Keep only assembler code & remove everything
else unrelated

>  Rewrites some components but keep AsmParser,
CodeEmitter & AsmBackend code intact (so easy
to sync with LLVM in future, e.g. update)

>  Keep all the code in C++ to ease the job (unlike
Capstone)

>  No need to rewrite complicated parsers

>  No need to fork llvm-tblgen

Solutions

>  LLVM compiled into multiple libraries

>  Supported libs

>  Parser

>  TableGen and etc

>  Keystone needs to be a single library

Issue 2 Solutions

>  Modify linking setup to generate a single library

>  libkeystone.[so, dylib] + libkeystone.a

>  keystone.dll + keystone.lib

Are We Done

>  Relocation object code generated for linking in the
final code generation phase of compiler

>  Ex on X86:

>  inc [_var1] → 0xff, 0x04, 0x25, A, A, A, A

Issue 3

>  Make fixup phase to detect & report missing
symbols

>  Propagate this error back to the top level API
ks_asm()

Solutions

Issue 4 Solutions

>  Ex on ARM: blx 0x86535200 → 0x35, 0xf1, 0x00,
0xe1

>  ks_asm() allows to specify address of first
instruction

>  Change the core to retain address for each
statement

>  Find all relative branch instruction to fix the
encoding according to current & target address

Are We Done

>  Ex on X86: vaddpd zmm1, zmm1, zmm1, x → "this
is not an immediate"

>  Returned llvm_unreachable() on input it cannot
handle

Issue 5

>  Fix all exits & propagate errors back to ks_asm()

>  Parse phase

>  Code emit phase

Solutions

Issue 6 Solutions

>  LLVM does not support non-LLVM syntax

>  We want other syntaxes like Nasm, Masm,
etc

>  Bindings must be built from scratch

>  Keep up with upstream code once forking LLVM to
maintain ourselves

>  Extend X86 parser for new syntaxes: Nasm,
Masm, etc

>  Built Python binding

>  Extra bindings came later, by community: NodeJS,
Ruby, Go, Rust, Haskell & OCaml

>  Keep syncing with LLVM upstream for important
changes & bug-fixes

Keystone is not LLVM

>  Independent & truly a framework

>  Do not give up on bad-formed assembly

>  Aware of current code position (for relative
branches)

>  Much more compact in size, lightweight in memory

>  Thread-safe with multiple architectures supported
in a single binary More flexible: support X86 Nasm
syntax

>  Support undocumented instructions: X86

>  Provide bindings (Python, NodeJS, Ruby, Go,
Rust, Haskell, OCaml as of August 2016)

Fork and Beyond

Demo

 	

Show Case: metame

Before After

One More Thing	

The IDA Pro

IDA Pro
§  RE Standard
§  Patching on the fly is always a must
§  Broken “Edit\Patch Program\ Assembler” is always giving us problem

ARM
PUSH RAX

PUSH ESI

Keypatch

A binary editor plugin for IDA Pro
§  Fully open source @ https://keystone-engine.org/keypatch
§  On the fly patching in IDA Pro with Multi Arch
§  Base on Keystone Engine
§  By Nguyen Anh Quynh & Thanh Nguyen (rd) from vnsecurity.net

Latest Keypatch and DEMO

Fill Range
§  Select Start, End range and patch with bytes
§  Goto: Edit | Keypatch | Fill Range
§  QQ: 2880139049

T H A N K S	
[Hacker@KCon]	

