blackhat **USA 2024** AUGUST 7-8, 2024

BRIEFINGS

Fallen Tower of Babet Rooting Wireless Mesh Networks by Abusing Heterogeneous Control Protocols

Speakers: Xin'an Zhou and Zhiyun Qian Contributors: Juefei Pu, Qing Deng, Srikanth Krishnamurthy, Keyu Man 8/7/2024

Team/Contributors at UC RIVERSIDE

Xin'an Zhou

Zhiyun Qian

Qing Deng

Juefei Pu

Keyu Man

Srikanth Krishnamurthy

- Background on home wireless mesh networks
- Two types of security flaws
- Exploitation
- Defenses

Background: Home Wireless Mesh Networks

1. An emerging type of Wi-Fi network.

2. Single gateway node + multiple extender nodes

Images: TP-Link **#BHUSA @BlackHatEvents**

Wireless Mesh Networks are increasingly popular!

Netgear Orbi

TP-Link Deco

Linksys

ASUS

Images: Netgear, TP-Link, Linksys, ASUS **#BHUSA @BlackHatEvents**

Wireless Mesh Networks are increasingly popular!

Extending Connectivity in Home Networks with WMNs

• Inter-access-point backhaul links carry both user traffic and configurations.

h WMNs nfigurations.

Fronthaul Links Backhaul Links

A Motivating Question: How to Change Wi-Fi Passwords?

- Network Access Policy Synchronization (NAPS) helps access points Synchronize the Wi-Fi password Switch the SSID
 - Update firewall rules, DNS settings, Web UI password...
- A novel attack surface!

How is NAPS implemented?

- Channels: over backhaul links
- Protocols: ad-hoc crypto protocols and Wi-Fi EasyMesh
- We call them Network Access Policy Synchronization (NAPS) protocols

- A wireless client (attacker) has a fronthaul link credential.
- Can use ARP poisoning to perform MITM attacks.
- Goal 1: To obtain root shell to access points
- Goal 2: To steal WPA2/3 passphrases of backhaul/fronthaul links

Overall Results

Vendor	NAPS Protocol	Attack
NETGEAR	SOAP over TLS	Root
/SUS ®	AiMesh protocol	Root
tp-link	TCP over Dropbear SSH	Root
LINKSYS	TLS-SRP	Root
WYZE	MQTT with TLS	Wi-Fi passw
AMPLIFI	WebSocket with TLS	Wi-Fi passw
	EasyMesh	Wi-Fi passw

Logos are from vendor websites #BHUSA @BlackHatEvents

Security Flaws

- 1. Type I: Missing cross-layer trust (among mesh nodes)
- 2. Type II: Cross-layer trust compromise

Security Flaws

- 1. Type I: Missing cross-layer trust (among mesh nodes)
- 2. Type II: Cross-layer trust compromise

Flaw Type I: Missing Cross-layer Trust

- 1. Trust at link layer is well-established.
- 2. No trust anchors for NAPS layer (not bootstrapped properly)
- 3. Thus, attackers can manipulate NAPS protocols.

Case Study: Netgear Orbi's SOAP-over-TLS

Vulnerability: TLS but self-signed certificates

Attack #1: MITM against SOAP-over-TLS

Extender (TLS Server)

Case Study: Netgear Orbi's SOAP-over-TLS

Vulnerability:

Password required for invoking SOAP commands, but fully predictable

Predictable str = "NETGEAR_Orbi_<MAC_{Gateway}>_<MAC_{Extender}>_password"

Attack #2: Exploiting SOAP-over-TLS (Step 1)

(TLS Server)

Attack #2: Exploiting SOAP-over-TLS (Step 2)

(TLS Server)

Attack #2: Exploiting SOAP-over-TLS (Step 3)

0

Â

?

Case Study: Wyze's MQTT with TLS

Vulnerability:

- The key for MQTT(S) is shared among ALL Wyze devices Attack:
- Unpack the firmware, jackpot!
- Attacker wiretaps control data

Case Study: AmpliFi's WebSocket with TLS

- 1. Self-signed certificates for inter-AP TLS connections (again)
- 2. Fronthaul/backhaul passphrases were wrapped in (unencrypted) MessagePack formats

Example: Wi-Fi EasyMesh standard

- The opt-in standard for NAPS
- No authentication at all
- Uses 2 messages to perform opportunistic encryption in one round-trip time (1 RTT).

PoC: Wi-Fi EasyMesh

Overall Results

Vendor	NAPS Protocol	Attack
NETGEAR	SOAP over TLS	Root
/SUS ®	AiMesh protocol	Root
tp-link	TCP over Dropbear SSH	Root
LINKSYS	TLS-SRP	Root
WYZE	MQTT with TLS	Wi-Fi passw
AMPLIFI	WebSocket with TLS	Wi-Fi passw
WiFi 72 LIAN CR	EasyMesh	Wi-Fi passw

Logos are from vendor websites #BHUSA @BlackHatEvents

Security Flaws

- 1. Type I: Missing cross-layer trust (among mesh nodes)
- 2. Type II: Cross-layer trust compromise

Flaw Type II: Cross-layer Trust Compromise

- NAPS endpoints are reachable by attackers No logical isolation like VLAN
- Crypto failures and software vulnerabilities are still there
- One layer fails, all layers fail

Case Study: ASUS AiMesh Protocol

- 1. An encrypted protocol on top of TCP

2. "group_id" is the credential

Case Study: ASUS AiMesh Protocol

- 1. An encrypted protocol on top of TCP
- 2. "group_id" is the credential

ASUS AiMesh protocol is vulnerable to key leakage

"guarantees" security later.

Leaked group_id

1. "group_id" is broadcasted at the 802.11 layer

- Just sniff for the hashed "group_id" over-the-air
- Offline brute force to crack the "group_id"

Leaked group_id

9 0.081180 ASUSTekCOMPU_c8:3e:31 F	Broadcast	80	2.11			4	93					
10 0.086920 WistronNeweb_86:a8:41 E	spressif_a2:90:6c	80	2.11			1	16					
11 0.092163 TPLink_33:13:34 J	Pv4mcast_7f:ff:fa	80	2.11			5	18					
12 0.096363 TPLink 33:13:34 J	Pv4mcast_7f:ff:fa	80	2.11			5	18					
13 0.100893 TPLink 33:13:34 J	Pv6mcast 0c	80	2.11			5	16					
14 0.104691 TPLink 33:13:34 J	Pv6mcast 0c	80	2.11			5	16					
15 0.112439 TPL ink 33:13:34 1	Py6mcast 0c	80	2.11			5	25					
						•						
Type: WPS (0x04)			0000	00 0	00 24	00 61	08 00 40	ba 5a	a 4c 59	00 00	00 00	··\$·o··@·ZLY····
<pre>> Version: 0x10</pre>			0010	10 0		. 09 80	04 da a2	00 00	0 00 10 	18 03	04 00	
> Wifi Protected Setup State: Configured (*	0×02)		0020	40 0	-8 30	22 00	42 12 68	303,	l II II I b0 ob	8h c1	04 4Z	
> RF Bands: 2.4 and 5 GHz (0x03)			0040	2e 0	10 00	00 64	00 11 14	00 04	1 31 39	37 36	01 08	
> Vendor Extension			0050	82 8	34 8b	96 24	30 48 6c	03 0	L 02 05	04 00	01 00	····\$0Hl ·····
Tag: Vendor Specific: ASUSTek COMPUTER INC			0060	00 0	07 06	55 53	20 01 0b	1e 23	3 02 1c	00 2a	01 04	····US ·· ·#···*··
Tag. Number: Vonder Specific (221)			0070	32 0	04 0c	12 18	60 30 14	01 00	0 00 0f	ac 04	01 00	2 · · · ` 0 · · · · · · · · ·
Tag Number: Vendor Specific (221)			0080	00 0)f ac	04 01	00 00 0f	ac 02	2 0c 00	0b 05	01 00	
lag length: /l			0090	3c 0	00 00	46 05	32 00 00	00 00) 2d 1a	ef 19	17 ff	<··F·2·· ··-···
OUI: f8:32:e4 (ASUSTek COMPUTER INC.			00a0	ff 0	00 00	00 00	00 00 00	00 00	00 00	00 00	00 00	· · · · · · · · · · · · · · · · · · ·
Vendor Specific OUI Type: 1			00b0	00 0	00 00	00 00	00 3d 16	02 08	3 04 00	00 00	00 00	•••••=• •• •••••
Vendor Specific Data: 01010102010d03148c	e982744849b948ae707f2258004056663bc9	91407	0000	00 0	00 00	00 00	00 00 00	00 00	00 00	00 00	4a 0e	· · · · · · · · · · · · · · · · · · ·
 Tag: Vendor Specific: Epigram, Inc. 			0000	14 6	00 0a	00 20	01 08 00	14 U	0 05 00 F 0c h1	70 01	71 09 0f fo	
Tag Number: Vendor Specific (221)			00E0 00f0	05 0 ff 0	0 00) 60 00 fa ff		01 0	00 00	00 00	ff 1a	· · · · · · · · · · · · · · · · · · ·
Tag length: 26			0100	23 0	1 00	08 12	00 20 00	20 0	, 02 00 , c0 0d	41 81	08 00	#·····
OUT: 00:90:4c (Epigram, Inc.)			0110	8c 0	00 fa	ff fa	ff 19 1c	c7 7	l ff 07	24 04	00 01	
Vendor Specific OUI Type: 4			0120	0d f	fc ff	ff Øe	26 00 00	a4 08	3 20 a4	08 40	43 08	·
902 11n (Pro) Type: 4		•	0130	60 3	32 08	dd 1d	00 50 f2	04 10) 4a 00	01 10	10 44	`2····P· ··D
002.1111 (Pre) Type: Unknown (4)	0.5.5 - 5.500.00.5 - 5.500.00 - 0.0500.000.000		0140	00 0	01 02	10 3c	00 01 03	10 49	00 06	00 37	2a 00	····<··· ·I ··7*·
802.11n (Pre) Unknown Data: 18bf0cb1/9810	0TTATT0000TATT0020C0050002000000		0150	01 2	20 dd	47 f8	32 e4 <mark>01</mark>	01 03	L 02 01	0d 03	14 8c	• • G• 2• • • • • • • • • • • • • • • •
Tag: Vendor Specific: Broadcom			0160	e9 8	32 74	48 49	b9 48 ae	70 7	f 22 58	00 40	56 66	··tHI·H· p·"X·@Vf
Tag Number: Vendor Specific (221)			0170	3b c	29 14	07 04	00 00 00	00 12	2 04 31	34 38	00 13	;148
Tag length: 9			0180	010	10 15	01 00	14 14 eb	68 5	19b21	0b 10	5b d4	······ nQ·!··[·
OUI: 00:10:18 (Broadcom)			0190	80 1		10 32	99 8e 65	92 00		fa ff	90 4C	····2··e ····L
Vendor Specific OUI Type: 2			01b0	04 I c0 0	10 DT	00 00	00 00 44		10 00	02 01	00 20	· · · · · · y · · · · · · · · · · · · ·
Vendor Specific Data: 0201009c0000			0100	00 0	bb 06	18 00	50 f2 02	05 00	00 00	02 01	00 90	P
Tag: Vendor Specific: Microsoft Corp.: WMM/	WME: Parameter Element		01d0	27 a	4 00	00 47	43 5e 00	62 33	2 2 f 00	60 02	7f 00	'BC^. b2/.1
agi tendor spectrice niterosore corpri winy			0100	dd Ø	7 50	6f 0a	16 01 01	00 10	5 8e a6	82		Po

Type-Length-Value (TLV) structure.

Hash of "group_id" is stored at type 0x3

ASUS AiMesh protocol is vulnerable to key leakage

- 2. The attacker can then tamper with (encrypted) AiMesh connections.
 - To exploit cfg server's SSH management key installation functionality to gain root access.

	Firewall	Service	
		Enable Telnet	O Yes 🧿 No
Ø	Administration	Enable SSH	LAN only ~
Ø	System Log	SSH Port	60089
ø	Network Tools		* Due to security concerns, we suggest using a port from 1024 to 65535.
		Allow Password Login	O Yes 🧿 No
		Authorized Keys	ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABgQD2JE2F9DhQ1sE fyJkva5n6Ab9Uk+5+YhLuaKenyj3QaHfCvKHrulaS9ImXWOYN9F s3qF4aJIrri7dcJuYCBUk9TZn5/1VjLpfErkPGFkq2RAE/IQ0RD S2A48ecnQq7fUkQuL1GGUxGYaQ86l0kc9n4YK+I62sfoWfDXrG9 RmjD/1+nvp+Ef903iU8TqDhwtmApYmEPK9A4c76Y0d0R07IYnTF
		Idle Timeout	0 minute(s) (Disable : 0)

TP-Link Deco: Weak SSH key and command injections

- 1. Channel: Dropbear SSH with 512-bit RSA key length.
- Brute force an RSA private key in 4 days with a single PC in 2024.
- Software: GGNFS/MSIEVE

TP-Link Deco: Weak SSH key and command injections

- 2. Backhaul passphrases are derived from that RSA key pair.
- Irrevocable access to the network through backhaul links!
- 3. To exploit command injections of in the tmpsvr binary

Linksys: TLS-SRP Isn't the Silver Bullet

1. A zero-knowledge (ZK) protocol encrypting all control data.

cryptographic verifiers ≈ public key

SRP passwords ≈ private key

A machine-in-the-middle truly knows nothing about transmitted data.

Linksys: TLS-SRP Isn't the Silver Bullet

- 2. Pre-authentication command injection.
- An attacker can taint the *clientID*/srpuser field
- Steal stored SRP passwords XX

```
al;
      a2;
      a3:
      a4:
memset(&s, 0, 0x400u);
snprintf(&s, 0x400u, "/usr/sbin/smcdb_auth -L %s", v6);
v10 = popen(&s, "r");
v11 = v10;
```


0	\bigcirc		Downloads — ez@X	s-MBP-5 — -zsh	— 80×24
		~/Down	loads		~/Downloads
	Downloads	openssl			

Mitigation Status (Disclosed > 8 months ag

Vendor	Attack Results	Pate
NETGEAR	Root shell	[
	Root shell	[
tp-link	Root shell	
LINKSYS	Root shell	
WYZE	Wi-Fi password leakage	[
AMPLIFI	Wi-Fi password leakage	[
	Wi-Fi password leakage	

go)
ched?
✓
 ✓
 ✓
\wedge
 ✓
✓
\wedge

Defenses

Users

- Go home and update the firmware!
- Set a new Wi-Fi password.
- Check your wireless client list for any anomalies.

Network Engineers Rotate compromised keys to new

values unknown to previous attackers.

- Add some network isolations.
- Check out our paper for details.

Black Hat Sound Bytes

- 1. Wireless security is coming back
- 2. Home WMN control protocols are novel attack surfaces
- 3. Wireless standards and vendors can do more with security

Thank you!

Github Link:

https://github.com/seclab-ucr/CCS24Mesh

Research Paper:

Untangling the Knot: Breaking Access Control in Home Wireless Mesh Networks, CCS '24

https://www.cs.ucr.edu/~zhiyung/pub/ccs24_wireless_mesh.pdf

Feel free to talk to us offline in the hallway!

Contacts:

xinan.zhou@email.ucr.edu

zhiyunq@cs.ucr.edu

X (Twitter): <u>@zhouxinan</u> X (Twitter): <u>@pkqzy888</u>

