
Microarchitecture
Vulnerabilities
Past, Present and Future

Daniel Gruss (Graz University of Technology)
Anders Fogh (Intel Corporation)

Introduction
Daniel Gruss
Graz University of Technology

Anders Fogh
Intel

Daniel and Anders
do not always agree!!

Past

Past – earliest days

Side Channels always existed

Past – earliest days

Side Channels always existed

First scientific observations in 1943

Past – earliest days

Side Channels always existed

First scientific observations in 1943

Concept of “covert channels” in 1973

Past – earliest days

Side Channels always existed

First scientific observations in 1943

Concept of “covert channels” in 1973

1974-1980: Provable secure operating
systems with exceptions for side
channels

1985: Orange book. Covert channels
with low bandwidth not a problem

1996: Paul Kocher’s seminal work on
timing attacks

Past:
cryptographic attacks

1996-2015 Mainly side channels on
cryptography (threat model!)

Past:
cryptographic attacks

1996-2015 Mainly side channels on
cryptography (threat model!)

Colin Percival (2005): “Cache Missing
for fun and profit”

ISCA 2014 + BlackHat US 2015:
Rowhammer

USENIX Security 2015:
Cache Template Attacks

CCS + BlackHat US 2016:
Breaking KASLR

BlackHat EU 2017:
Security through distrusting

2017: Many academic works on attacking
TEEs with side channels

USENIX + BlackHat US 2018, S&P 2019:
Spectre & Meltdown

Past:
Moving beyond crypto

https://docs.google.com/file/d/1US1vZkBsYXePtLjmcj_ZfviUds9UDGNa/preview

ISCA 2014 + BlackHat US 2015:
Rowhammer

USENIX Security 2015:
Cache Template Attacks

CCS + BlackHat US 2016:
Breaking KASLR

BlackHat EU 2017:
Security through distrusting

2017: Many academic works on attacking
TEEs with side channels

USENIX + BlackHat US 2018, S&P 2019:
Spectre & Meltdown

Past:
Moving beyond crypto

https://docs.google.com/file/d/15CJqa35kf4xEl1xroFV5im55c8-hrNpA/preview

ISCA 2014 + BlackHat US 2015:
Rowhammer

USENIX Security 2015:
Cache Template Attacks

CCS + BlackHat US 2016:
Breaking KASLR

BlackHat EU 2017:
Security through distrusting

2017: Many academic works on attacking
TEEs with side channels

USENIX + BlackHat US 2018, S&P 2019:
Spectre & Meltdown

Past:
Moving beyond crypto

ISCA 2014 + BlackHat US 2015:
Rowhammer

USENIX Security 2015:
Cache Template Attacks

CCS + BlackHat US 2016:
Breaking KASLR

2017: Many academic works on attacking
TEEs with side channels

USENIX + BlackHat US 2018, S&P 2019:
Spectre & Meltdown

Past:
Moving beyond crypto

ISCA 2014 + BlackHat US 2015:
Rowhammer

USENIX Security 2015:
Cache Template Attacks

CCS + BlackHat US 2016:
Breaking KASLR

2017: Many academic works on attacking
TEEs with side channels

USENIX + BlackHat US 2018, S&P 2019:
Spectre & Meltdown

Past:
Moving beyond crypto

https://docs.google.com/file/d/1yKW-keLy7tQ7x9Fb90sq3P_V6DWbPW5X/preview

1. Window gadget starts executing
2. Mov rbx, [KernelAddress] starts executing
3. Mov rbx, [KernelAddress] Finish execution and deliver data
4. Store in Side Channel (SC): starts execution with data from 3.
5. Store in Side Channel (SC): Data is used to touch the cache allowing the attacker to recover

the data
6. Windows Gadget finishes
7. Fault is raised by “Mov rbx, [KernelAddress] “. All registers are cleared but data maintain

persistent in the cache.

Past: Meltdown

Out-of-Order unit – out of order execution (track speculation & faults)

<window gadget> mov rbx,[kerneladdress] <recover via SC>

Meltdown: Details

AGU
Calculate

Virtual
Address

(VA)

L1 “front end”
Provide all data from ways L1 “back

end”
Select relevant data
and return data to

OoODTLB
Get Physical Address (PA)

&
Raise faults

Row
VA[6..13]

VA

All data for
VA

PA
(way select)

K
er

ne
l

ad
dr

es
s Faults

D
ata

Out-of-Order unit – out of order execution (track speculation & faults)

<window gadget> mov rbx,[kerneladdress] <recover via SC>

Meltdown: Details

AGU
Calculate

Virtual
Address

(VA)

L1 “front end”
Provide all data from ways L1 “back

end”
Select relevant
data and return

data to OoODTLB
Get Physical Address (PA)

&
Raise faults

Row
VA[6..13]

VA

All data for
VA

PA
(way select)

K
er

ne
l

ad
dr

es
s Faults

D
ata

Out-of-Order unit – out of order execution (track speculation & faults)

<window
gadget> mov rbx,[kerneladdress] <recover via

SC>

1. OoO Trigger
load to AGU

Meltdown: Details

AGU
Calculate

Virtual
Address

(VA)

L1 “front end”
Provide all data from ways L1 “back

end”
Select relevant
data and return

data to OoODTLB
Get Physical Address (PA)

&
Raise faults

Row
VA[6..13]

VA

All data for
VA

PA
(way select)

K
er

ne
l

ad
dr

es
s Faults

D
ata

Out-of-Order unit – out of order execution (track speculation & faults)

<window
gadget> mov rbx,[kerneladdress] <recover via

SC>

1. 1.OoO Trigger load to
AGU

2. 2.AGU sends
index to L1 &
VA to DTLB

Meltdown: Details

AGU
Calculate

Virtual
Address

(VA)

L1 “front end”
Provide all data from ways L1 “back

end”
Select relevant
data and return

data to OoODTLB
Get Physical Address (PA)

&
Raise faults

Row
VA[6..13]

VA

All data for
VA

PA
(way select)

K
er

ne
l

ad
dr

es
s Faults

D
ata

Out-of-Order unit – out of order execution (track speculation & faults)

<window
gadget> mov rbx,[kerneladdress] <recover via

SC>

1. OoO Trigger load to
AGU

2. AGU sends index to
L1 & VA to DTLB

3. L1 identifies all
cache lines for
for index

Meltdown: Details

AGU
Calculate

Virtual
Address

(VA)

L1 “front end”
Provide all data from ways L1 “back

end”
Select relevant
data and return

data to OoODTLB
Get Physical Address (PA)

&
Raise faults

Row
VA[6..13]

VA

All data for
VA

PA
(way select)

K
er

ne
l

ad
dr

es
s Faults

D
ata

Out-of-Order unit – out of order execution (track speculation & faults)

<window
gadget> mov rbx,[kerneladdress] <recover via

SC>

1. 1.OoO Trigger load to
AGU

2. 2.AGU sends index to
L1 & VA to DTLB

3. 3.a L1 identifies all
cache lines for for
index

4. DTLB sends PA
to L1 and faults
to OoO

Meltdown: Details

AGU
Calculate

Virtual
Address

(VA)

L1 “front end”
Provide all data from ways L1 “back

end”
Select relevant
data and return

data to OoODTLB
Get Physical Address (PA)

&
Raise faults

Row
VA[6..13]

VA

All data for
VA

PA
(way select)

K
er

ne
l

ad
dr

es
s Faults

D
ata

Out-of-Order unit – out of order execution (track speculation & faults)

<window
gadget> mov rbx,[kerneladdress] <recover via

SC>

1. OoO Trigger load to
AGU

2. AGU sends index to
L1 & VA to DTLB

3. L1 identifies all cache
lines for for index

4. DTLB sends PA &
faults to L1/OoO

5. L1 send right
data to OoO

Meltdown: Details

AGU
Calculate

Virtual
Address

(VA)

L1 “front end”
Provide all data from ways L1 “back

end”
Select relevant
data and return

data to OoODTLB
Get Physical Address (PA)

&
Raise faults

Row
VA[6..13]

VA

All data for
VA

PA
(way select)

K
er

ne
l

ad
dr

es
s Faults

D
ata

Out-of-Order unit – out of order execution (track speculation & faults)

<window
gadget> mov rbx,[kerneladdress] <recover via

SC>

1. OoO Trigger load to
AGU

2. AGU sends index to
L1 & VA to DTLB

3. L1 identifies all cache
lines for for index

4. DTLB sends PA &
faults to L1/OoO

5. L1 send right data to
OoO

6. OoO execute
depend
instructions

AGU
Calculate

Virtual
Address

(VA)

L1 “front end”
Provide all data from ways L1 “back

end”
Select relevant data
and return data to

OoO
If Fault return 0

DTLB
Get Physical Address (PA)

&
Raise faults

Row
VA[6..13]

VA

All data for
VA

PA
(way select)

+Faults

K
er

ne
l

ad
dr

es
s Faults

D
ata or 0

The First Meltdown Mitigations

Out-of-Order unit – out of order execution (track speculation & faults)

<window gadget> mov rbx,[kerneladdress] <recover via SC>

AGU
Calculate

Virtual
Address

(VA)
If CPL=3

&&
VA&bit[63]
raise fault
and stop

L1 “front end”
Provide all data from ways L1 “back

end”
Select relevant data
and return data to

OoO
If Fault return 0

DTLB
Get Physical Address (PA)

&
Raise faults

Row
VA[6..13]

VA

All data for
VA

PA
(way select)

+Faults

K
A

Faults

D
ata or 0

Fault

Meltdown defense in depth (LASS)

Out-of-Order unit – out of order execution (track speculation & faults)

<window gadget> mov rbx,[kerneladdress] <recover via SC>

Spectre and LVI

Present

Present: Trends

Attack type Activity level (Point) Mitigation Notable

Crypto side channels
↘

Guidance & DOIT Data dependent features for
example data dependent

prefetchers
Transient execution

vulnerabilities ↘ Hardware + Software
+on/off switches

Workarounds

Predictive store forwarding

Stale data vulnerabilities
↘ Microcode Patches or

SW Mitigation
(if possible)

Not any recent attacks

Logical bugs
↗ Microcode Patches

(if possible)
Reptar, CacheWarp

Physical properties
↗

Hertzbleed, Collide+Power

Exploitation methods
↗

Spectre & Power

Logic Issues

Reptar - What’s supposed to happen
REPNZ is a prefix that will repeat an operation until
the Z-flag becomes zero.

MOVSB will copy a single byte from DS:[RSI] to
ES:[RDI] and increment both registers and
decrement RCX & update flags.

REPNZ MOVSB is thus a simple memcpy.

The REX-prefix (REX.PF) changes the meaning of
how explicit operands of an instruction are
interpreted. MOVSB doesn’t have any explicit
operands.

If you use the REX-prefix with REPNZ MOVSB the
CPU should ignore the prefix entirely

Reptar - The bug
When the REX-prefix is parsed instead of ignored
a single bit is overwritten.

This cause an invalid input to be used to generate
uOps.

Under certain conditions this leads to a machine
check. Careful analysis found that a condition
could potentially lead to privilege escalation.

A microcode change that mitigates the issue has
been made public.

Cachewarp
Confidential VM (encrypted but
basically no data integrity)

invd instruction can invalidate a single
cache line

Attack in three steps:

1. let confidential VM modify a
target cache line

2. use invd to drop the
modification

3. confidential VM continues with
an outdated value

http://www.youtube.com/watch?v=Za6KVLVF1AA

Zenbleed
Register names are just for the user, CPU uses
register file

XMM Register Merge Optimization: merge
registers (e.g. zero registers)

also: for zero just set a zero-bit

Zenbleed:

1. misspeculation
2. vzeroupper → set zero-bit
3. merge → storage in register file released
4. victim stores data in this register
5. unroll misspeculation
6. architectural access to a victim data

Exploitation Techniques

Exploitation techniques -
example
GhostRace: Exploiting and Mitigating
Speculative Race Conditions - Hany Ragab et.
al.

Spectre v1. variant that speculatively bypasses
synchronization primitives.

Existing methods of mitigating Spectre v1
remain effective.

Quote from the papers abstract:
“There’s is security, and then there’s just being ridiculous” - Linus
Torvalds, on Speculative Race Conditions

Physical Domain in
Software

Software-based
Power Analysis

before 2020: mainly fingerprinting

Software-based
Power Analysis

before 2020: mainly fingerprinting

2020: Platypus
full recovery of cryptographic keys

Software-based
Power Analysis

before 2020: mainly fingerprinting

2020: Platypus
full recovery of cryptographic keys

2023: Hertzbleed
DVFS makes timing a proxy for energy
consumption → remote attacks

Software-based
Power Analysis

before 2020: mainly fingerprinting

2020: Platypus
full recovery of cryptographic keys

2023: Hertzbleed
DVFS makes timing a proxy for energy
consumption → remote attacks

2023: Collide+Power
Generic Attacks (not just crypto)

Software-based
Fault Attacks

since 2015: Rowhammer
still not solved!

Software-based
Fault Attacks

since 2015: Rowhammer
still not solved!

2017: CLKScrew
overclock and attack Arm TrustZone

Software-based
Fault Attacks

since 2015: Rowhammer
still not solved!

2017: CLKSkrew
overclock and attack Arm TrustZone

2020: Plundervolt (VoltJockey,
V0ltpwn, VoltPillager)
undervolt and attack Intel SGX

https://docs.google.com/file/d/1KgEebTV6nDWTkIHKNX6vRNZiC1nIxGlU/preview

Mitigation efforts

Limitations of
mitigations

Physical hardware cannot be
changed in the field

Limitations of
mitigations

Physical hardware cannot be
changed in the field

Limitations of
mitigations

Physical hardware cannot be
changed in the field

Vendors build in “Survivability features”

Microcode is the most common used tool for
mitigations.

Other firmware is also used

Instructions

Microcode / Firmware

Hardware

Limitations of
mitigations

Physical hardware cannot be
changed in the field

Vendors build in “Survivability features”

Microcode is the most common used tool for
mitigations.

Other firmware is also used

“Chicken bits” to disable / change behavior

Limitations of
mitigations

Physical hardware cannot be
changed in the field

Vendors build in “Survivability features”

Microcode is the most common used tool for
mitigations.

Other firmware is also used

“Chicken bits” to disable / change behavior

Some issues are best mitigated in software

Limitations of
mitigations

Physical hardware cannot be
changed in the field

Vendors build in “Survivability features”

Microcode is the most common used tool for
mitigations.

Other firmware is also used

“Chicken bits” to disable / change behavior

Some issues are best mitigated in software

Mitigations are not always
possible/reasonable and almost always

difficult and time-consuming to engineer

Prevention starts before the
product exist: pre-silicon

Pre-silicon is slow and
cumbersome as the chips are
emulated or simulated.

This makes security validation &

research significantly different
from software validation

Prevention Pre-silicon

Validation03
● Security properties to standard

validation
● FInds bugs during development

Formal validation04
● Formal works well with hardware IP
● Formal definition of security properties

can be done, but not easy

Architecture reviews01
● Gives great ROI
● There is formal and informal reviews on

arch

Taint tracking02
● Taint tracking has proven useful for

some issues
● Techniques such as CellFT used in

production

Defense in depth &
hardening05

● Bug analysis should lead to lessons
learned

Post-silicon

Prevention in silicon
happens before product ship
from A0 to shipping systems.

Some issues are best found
in post-silicon.

Post-silicon issues are
particularly difficult.

Learning from issues on last
generation hardware is critically
important.

Validation03
● Especially useful on early silicon
● Regression issues
● Issues not easily found in pre-si

Fuzzing04
● Problematic: Large state space, slow

with good feedback
● There are exceptions

Manual research01
● Manual research is effective
● Enabled by expertise, documentation,

access to devs, debug, etc.
● Early silicon helps prevent escapes

Variant analysis02
● Variant analysis on every issue
● Occasionally finds issues, but lots of

learning for systematic efforts

Future

Future of uArch security
is future of uArch

Silicon performance is the main
underlying driver for growth in compute
ecosystem

Performance comes from
3 sources

● New process technology
● uArch improvements
● Adaptation to changed

workloads

uArch improvements & Changed
workloads will lead to new security
challenges

uArch security future
Offense

New kinds of prediction & data dependent
behaviors (memory latency!). Memory is order of
magnitude slower than compute. Some
examples:

● New kinds of caches and bigger caches
● Work load specific prefetchers
● Different kinds of value prediction
● Cache & memory compression
● Growth in reorder buffer sizes
● New exploitation techniques

Defense

● Increased maturity
○ Better tooling
○ More defense in depth

● New microarchitecture
security features

● More configurability of
security

○ Ex.PSF switch on AMD
● Improved support for

software influence
○ Ex. Local configuration

switches

New kinds of compute
more heterogeneous - but all have uArch:

● GPU (new use cases)
○ Remote accessible
○ Increased complexity and new work loads
○ Example: “LeftoverLocals” by Trails of Bits

● Neural Processing Units
○ New model of compute
○ New threats: Integrity of models
○ Attack vector against system

● AI training accelerators in the
cloud

○ Soon: shared resources + multi tenant

● More generally: More kinds of compute,
more accelerators

Defensive side of
things
Huge gap between academia and
industry:

Academia
● provable Rowhammer

mitigations available
● provable secure cache available

Industry
● probabilistic Rowhammer

mitigations
● secure caches not adopted (but

non-inclusive LLCs)

uArch in uArch

Embedded processors everywhere --
already with speculation:

Speculation vs confidentiality?

● Threat models rarely contain
arbitrary execution

→ constrains attackers
● Embedded processors often provide

low-level access → new and
different kinds of assets

Take Aways

Side channels are here to stay

- Side channels can be managed

more aspects of microarchitecture and different kinds of issues

- Hard work for both offensive research and defense
- Defense is maturing

Microarchitecture is a growth area, so is microarchitecture security

Microarchitecture matters, so does microarchitecture security

Microarchitecture
Vulnerabilities
Past, Present and Future

Daniel Gruss (Graz University of Technology)
Anders Fogh (Intel Corporation)

