TUNNEL VISION

EXPLORING VPN

POST-EXPLOITATION

TECHNIQUES

blackhat

Agenda

- VPN exploitation
- VPN post-exploitation
- What can we do about it

Ori David

Security Researcher at Akamai Background in red teaming & threat hunting

Why VPNs are appealing to attackers?

Why VPNs are appealing to attackers?

"Classic" VPN exploitation

Abused mainly to gain initial access to the network

VPN Post-Exploitation?

VPN post-exploitation

Windows

- Persistency
- Credential Access
- ...

Implant based post-exploitation

© Mandiant "Cutting Edge part 4" report

Implant based post-exploitation

- Run a custom implant on the underlying device OS
- Modify system files or hook functions

Full control over device functionality

Living off the land

Living off the VPN

Our test subjects

Abusing Remote Authentication Servers

Local user authentication

Remote authentication servers

Abusing LDAP Authentication

Fortigate LDAP authentication

CLEARTEXT LDAP authentication

```
Lightweight Directory Access Protocol
```

```
LDAPMessage bindRequest(3) "CN=fortigate-ldap,CN=Users,DC=aka,DC=test" simple
messageID: 3
```

```
> protocolOp: bindRequest (0)
```

```
> bindRequest
```

```
version: 3
```

```
name: CN=fortigate-ldap,CN=Users,DC=aka,DC=test
```

```
~ authentication: simple (0)
```

```
simple: abcdefg1234567890!#$
```


CLEARTEXT LDAP authentication

- Leaks 2 sets of credentials:
 - The configured Fortigate LDAP service account
 - The credentials of the authenticating user
- LDAPS is supported, but not used by default

Ivanti LDAP authentication

- Two types of LDAP authentication servers:
 - LDAP
 - Active Directory

Authentication Servers						
Ena	able Auth Traffic Control					
New:	(Select server type)	~	New Server			
	(Select server type)					
10	Local Authentication ACE Server					
	Active Directory RADIUS Server		Туре			

Ivanti

LDAP authentication server

- The default setting uses TLS
- When LDAP is used a simple bind is performed

```
> Lightweight Directory Access Protocol

> LDAPMessage bindRequest(1) "cn=Administrator,cn=users,dc=aka,dc=test" simple

messageID: 1

> protocolOp: bindRequest (0)

> bindRequest

version: 3

name: cn=Administrator,cn=users,dc=aka,dc=test

> authentication: simple (0)

simple: P@ssw0rd
```


Active Directory authentication server

Uses Kerberos authentication

```
LDAPMessage bindRequest(4) "<ROOT>" sasl
  messageID: 4
 v protocolOp: bindRequest (0)
   v bindRequest
      version: 3
      name:
    ~ authentication: sasl (3)
      × sasl
         mechanism: GSS-SPNEGO
         credentials: 60820b9806062b0601050502a0820b8c30820b88a018301606092a864882f71201020206...
        GSS-API Generic Security Service Application Program Interface
           OID: 1.3.6.1.5.5.2 (SPNEGO - Simple Protected Negotiation)
         Simple Protected Negotiation
           negTokenInit
             > mechTypes: 2 items
              mechToken: 60820b6206092a864886f71201020201006e820b5130820b4da003020105a10302010ea2...
             > krb5_blob: 60820b6206092a864886f71201020201006e820b5130820b4da003020105a10302010ea2...
```

Fortigate

Capturing LDAP credentials

Ivanti

- If LDAPS/Kerberos is used downgrade to LDAP ^A
- Use the built in packet capture utility to intercept passwords

TCP Dump								
User Sessions	Monitoring	Tools	System Snapshot	Ren				
TCP Dump Comm	ands Kerberos	•						
This allows you to sniff the packet headers on the network, and save them in a dump file.								
TCP Dump Status: Stopped								
Interface	VLAN Port							
Internal	internal 172.25.14.125 🗸							
External		~						
Management		~						
Promiscuous mode: (On 🔿 Off							
Filter:								
	Start Sniffing							

LDAP authentication summary

Fortigate

LDAP credentials sent to a compromised VPN can be trivially captured

Abusing Multiple Authentication Servers

Fortigate

Fortigate multiple authentication servers

- Authentication is managed using user groups
- Each user group can include multiple authentication servers
- Authentication is performed against all servers

Ivanti multiple authentication servers

- Only one authentication server per group
- A secondary authentication server can be configured

lvanti

Rogue authentication server

Fortigate

Ivanti

Rogue authentication server summary

Fortigate

Ivanti

- Compromise **any credential** sent to the VPN
 - \circ Local VPN users
 - Remote LDAP users
 - RADIUS authentication
 - 0...

Extracting configuration passwords

Configuration file passwords

- VPNs store a variety of secrets in their configuration
 - Local user passwords
 - SSH Keys
 - 3rd party integration accounts
- Secrets are stored in an **encrypted** form (not hashed!)

```
user_local:
- guest:
type: password
passwd: ENC BAhcRumOucwyKL1o7WbjHq0LX3qVS1T1UIdn
```


Fortigate password encryption

- Configuration passwords on all Fortigate devices were encrypted using a hard coded key
- And it's not a good one

Decrypting FortiGate passwords (CVE-2019–6693)

Bart Dopheide · Follow

Fortigate CVE-2019-6693

- Fix allow users to specify a custom encryption key
- Disabled by default same key is still used today

Fortigate

Bypassing Fortigate custom key

- The custom encryption key feature can be disabled by an admin
- Reverts password encryption to the default key!

Ivanti password encryption

How are passwords encrypted?

(Juniper last owned Connect Secure in 2015)

Ivanti

Decrypting Ivanti config passwords

- Same static key is used across all secrets
- Uses AES-based custom encryption routine

v18 = dword_1185260[BYTE2(v15)] ^ dword_1184E60[BYTE1(v53)] ^ key_offset[6] ^ dword_1185660[HIBYTE(v17)] ^ dword_11 v19 = dword_1185260[BYTE2(v53)] ^ dword_1184E60[BYTE1(v16)] ^ key_offset[7] ^ dword_1185660[HIBYTE(v15)] ^ dword_11 v20 = dword_11B5260[BYTE2(v18)] ^ dword_11B4E60[BYTE1(v19)] ^ key_offset[8] ^ dword_11B5660[HIBYTE(cipher_byte4b)] v54 = dword_1185260[BYTE2(v19)] ^ dword_1184E60[BYTE1(cipher_byte2a)] ^ key_offset[9] ^ dword_1185660[HIBYTE(v18)] = dword_1185260[BYTE2(cipher_byte2a)] ^ dword_1184E60[BYTE1(cipher_byte4b)] ^ key_offset[10] ^ dword_1185660[H] v22 = dword_11B5260[BYTE2(cipher_byte4b)] ^ dword_11B4E60[BYTE1(v18)] ^ key_offset[11] ^ dword_11B5660[HIBYTE(ciphe v1 = dword 11B5260[BYTE2(560[HIBYTE(v54)] ^ dword 11 v2 = dword_1185260[BYTE2(60[HIBYTE(v21)] ^ dword_11 NTNOROTHO v23 = dword_11B5260[BYTE2_ 5660[HIBYTE(v22)] ^ dword_1 v24 = dword_11B5260[BYTE2] 5660[HIBYTE(v20)] ^ dword_1 660[HIBYTE(v2)] ^ dword_11 v25 = dword_1185260[BYTE2] v55 = dword 1185260[BYTE2] 60[HIBYTE(v23)] ^ dword_11 v26 = dword_11B5260[BYTE2] 50[HIBYTE(v24)] ^ dword_11E v27 = dword 1185260[BYTE2] 60[HIBYTE(v1)] ^ dword_11E v3 = dword_11B5260[BYTE2(60[HIBYTE(v55)] ^ dword_11 v4 = dword_11B5260[BYTE2(60[HIBYTE(v26)] ^ dword_11 v28 = dword_1185260[BYTE2 660[HIBYTE(v27)] ^ dword_1 v29 = dword_11B5260[BYTE2 660[HIBYTE(v25)] ^ dword_1 v30 = dword_1185260[BYTE2 660[HIBYTE(v4)] ^ dword_11 60[HIBYTE(v28)] ^ dword_11 v56 = dword_11B5260[BYTE2 TIMEFORTHAT v31 = dword 11B5260[BYTE2] 0[HIBYTE(v29)] ^ dword_11E v32 = dword_1185260[BYTE2 60[HIBYTE(v3)] ^ dword_11E v58 = dword_11B5260[BYTE2 660[HIBYTE(v56)] ^ dword_1 memecenter.com MemeCenter 560[HIBYTE(v31)] ^ dword_11 v5 = dword_11B5260[BYTE2(v33 = dword_11B5260[BYTE2(v30)] ^ dword_11B4E60[BYTE1(v56)] ^ key_offset[30] ^ dword_11B5660[HIBYTE(v32)] ^ dword_1 v34 = dword_11B5260[BYTE2(v56)] ^ dword_11B4E60[BYTE1(v31)] ^ key_offset[31] ^ dword_11B5660[HIBYTE(v30)] ^ dword_1 v6 = dword_11B5260[BYTE2(v33)] ^ dword_11B4E60[BYTE1(v34)] ^ key_offset[32] ^ dword_11B5660[HIBYTE(v5)] ^ dword_11B v57 = dword_11B5260[BYTE2(v34)] ^ dword_11B4E60[BYTE1(v58)] ^ key_offset[33] ^ dword_11B5660[HIBYTE(v33)] ^ dword_1 v35 = dword_11B5260[BYTE2(v58)] ^ dword_11B4E60[BYTE1(v5)] ^ key_offset[34] ^ dword_11B5660[HIBYTE(v34)] ^ dword_11 v36 = dword_1185260[BYTE2(v5)] ^ dword_1184E60[BYTE1(v33)] ^ key_offset[35] ^ dword_1185660[HIBYTE(v58)] ^ dword_11

In the support of the support of

v21

Decrypting Ivanti config passwords

Attacker Lab Environment

Decrypting Ivanti config passwords

Attacker Lab Environment

4. Capture decrypted password

Decrypting Ivanti config passwords

- Lightweight Directory Access Protocol
- VLDAPMessage bindRequest(2) "admin2" simple messageID: 2
 - ~ protocolOp: bindRequest (0)
 - ∨ bindRequest
 - version: 3
 - name: admin2
 - ~ authentication: simple (0)

simple: 123456

Ivanti

Ivanti MDM passwords

```
<name>MDM SERVER</name>
<mdm>
    <settings>
        <mdm-server-type>airwatch</mdm-server-type>
        <intune-cloudtype>globalService</intune-cloudtype>
        <mi-servertype>miCore</mi-servertype>
        <client-id></client-id>
        <client-secret-encrypted></client-secret-encrypted>
        <server-url>http://www.a.com</server-url>
        <viewer-url></viewer-url>
        <request-timeout>15</request-timeout>
        <username>mdm admin</username>
                                            </password-encrypted>
        <password-encrypted>
                                            </password-cleartext>
        <password-cleartext>
        <tenant-code>123456</tenant-code>
        <device-identity>require-certificate</device-identity>
        <id-template> & lt; certDN.CN & gt; </id-template>
        <id-type>udid</id-type>
```

Configuration passwords summary

Ivanti

Fortigate

An attacker with control over a VPN can easily obtain any secret from the configuration file

Fortinet's response

- Updated documentation to strongly discourage plain LDAP usage
- Custom encryption key bypass fix (No CVE)

Ivanti's response

- CVE-2024-37374: Static encryption key for configuration secrets
- CVE-2024-37375: MDM passwords saved in cleartext

Lateral Movement Leading to Active Directory Compromise

UNC5330 gained initial access to the victim environment by chaining together CVE-2024-21893 and CVE-2024-21887, a tactic outlined in <u>Cutting Edge Part 3</u>. Shortly after gaining access, UNC5330 leveraged an LDAP bind account configured on the compromised lvanti Connect Secure appliance to abuse a vulnerable Windows Certificate Template, created a computer object, and requested a certificate for a domain administrator. The threat actor then impersonated the domain administrator to perform subsequent DCSyncs to extract additional credential material to move laterally.

Detection & Mitigation

Detection

Collect and analyze logs

Monitor configuration changes

Mitigation

Limit service account permissions

Use dedicated identities for VPN authentication

Employ Zero Trust Network Access (ZTNA)

- Threat actors are after your VPN
- A compromised VPN can provide much more than network access
- Do not trust your VPN assume breach and attempt to minimize the risks

iv id="static_templates"></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div>