
FromWeapontoTarget:QuantumComputersParadox
Mădălina Bolboceanu
mbolboceanu@bitdefender.com

Sorin Bolos,
sorin.bolos@transilvania-quantum.com

Adrian Coles, a
acolesa@bitdefender.com

Andrei Kisari
akisari@bitdefender.com

Andrei Lut,as,
vlutas@bitdefender.com

Dan Lut,as,
dlutas@bitdefender.com

Radu Mărginean
radu.marginean@transilvania-quantum.com

Andrei Muntea
amuntea@bitdefender.com

Radu Portase
rportase@bitdefender.com

Miruna Ros, ca
mrosca@bitdefender.com

August 2, 2024

Executive Summary

The impact of quantum computing on the classical computing based cybersecurityhas been discussed extensively over the past 30 years. This led to development ofthe so-called post-quantum cryptography. In the same time, relatively little atten-tion has been paid to the security of quantum computers. This paper examinesissues related to the security of quantum computers and quantum computing pro-
cess. We investigated in this direction trying to identify possible vulnerabilities and
attack vectors in the most popular quantum computing infrastructures.We looked at the main quantum computer providers, like IBM and IonQ, andthe different ways their resources could be used by end users. Furthermore, weanalyzed the most popular quantum software development kits, like Qiskit, andthe entire quantum programming workflow they imply.The result of our analysis is a set of threat models and attack vectors on the dif-ferent phases of the quantum programming workflow. For some identified attackvectors we derived proof-of-concept attacks.In the realm of classical attacks on classical computing resources, in particular,on quantum computing software stack, including the cloud services that must beused to let end users access centralized quantum computers, we identified flawsregarding the way authentication tokens are managed, which make them vulner-able to being stolen and used to impersonate victim users. In the same class ofattacks, we developed one that corrupts quantum SDKs’ packages to transparently
tamper with end users’ quantum circuits, injecting attacker’s circuits alongside vic-tim’s ones and making their presence invisible for the attacked user.Regarding quantum-based attacks on quantum processing units (QPUs), we im-plemented a couple of proof-of-concept attacks that try to (1) exploit the quantum
computers’ qubit imperfect reset to infer results of quantum circuits run before theattacker’s circuit (2) exploit the quantum computers’ qubit imperfect reset to affect theresults of circuits run immediately after, and (3) evaluate impact of qubit cross-talk

Quantum Computing Security 2

effects in multi-tenant scenarios.By our investigation, we want to raise awareness for both end users, to protecttheir data and computers while running quantum programs, and quantum com-puter providers, to protect their infrastructures against possible attacks.
We make publicly available the code of our experiments at https://github.

com/Transilvania-Quantum/quantum-computing-security-investigations.

https://github.com/Transilvania-Quantum/quantum-computing-security-investigations
https://github.com/Transilvania-Quantum/quantum-computing-security-investigations

Contents

Executive Summary 1

1 Introduction 6

2 Quantum Computing Overview 92.1 Quantum Bits, Gates, Circuits and Computers 92.2 Quantum Computer Providers . 112.3 Open-Source Quantum Software Development Kits (SDKs) 132.4 Quantum Programming Workflow . 152.5 Quantum Computers Today . 17
3 Threat Models 183.1 Classical Attacks on Quantum Computing Software Stack 203.2 Classical Attacks on Quantum Processing Units (QPUs) 233.3 Quantum Attacks on Classical Computers 243.3.1 Quantum Algorithms and Security on Internet 243.3.2 Post-Quantum Cryptography 253.3.3 The Transition to PQC . 253.4 Quantum Attacks on QPUs . 25
4 Attack Vectors 284.1 Classical Attacks on Quantum Computing Software Stack 284.1.1 Supply Chain Attacks . 284.1.2 Compromised Quantum User’s Computer 294.1.3 Untrusted Transpilers . 294.1.4 Plain-Text Authentication Tokens 304.1.5 Man-in-the-Middle (MitM) . 30

Quantum Computing Security 4

4.1.6 DNS / IP Spoofing . 304.1.7 Man-in-the-Browser (MitB) . 314.1.8 Denial of Service (DoS) . 314.1.9 Untrusted Quantum Providers 314.1.10 Untrusted Quantum Users . 324.2 Classical Attacks on QPUs . 324.2.1 Attacking QPU Calibration Using the Pulse API 324.2.2 Side-Channel Attacks . 334.2.3 Scheduler Attacks . 334.3 Quantum Attacks on Classical Computers 344.3.1 Quantum Algorithms . 344.4 Quantum Attacks on QPUs . 354.4.1 The |11..1⟩ State Initialization Attack 354.4.2 Accessing Higher Energy States Attacks 374.4.3 Readout Attacks in Multi-tenant Environments 394.4.4 Readout Attacks in Single-tenant Environments 404.4.5 Cross-Talk Attacks . 414.4.6 Shuttle Exploiting in Trapped-Ions Quantum Computers . . . 43
5 Research, Analysis and Experiments 455.1 Classical Attacks on Quantum Computing Software Stack 455.1.1 Attacking the API Authentication Tokens 455.1.2 Quantum Circuit Hidden Alteration 485.2 Classical Attacks on QPUs . 505.2.1 Attacking QPU Calibration Using the Pulse API 505.3 Quantum Attacks on Classical Computers 515.4 Quantum Attacks on QPUs . 515.4.1 Experiments on Qubit Reset Attacks 515.4.2 Fault Injection Attacks . 575.4.3 Exploring the Potential for Cross-Talk Attacks 62
6 Reflections on Quantum Computer Related Security 666.1 Importance of Our Investigation . 666.2 Attacks and Defenses . 676.2.1 Classical Attacks on Quantum Computing Software Stack . . 676.2.2 Classical Attacks on QPUs . 706.2.3 Quantum Attacks on Classical Computers 70

Quantum Computing Security 5

6.2.4 Quantum Attacks on QPUs . 70
Conclusions 72

Appendices 73

1 Introduction

While the impact of quantum computing on the classical computing based cyber-security has been discussed extensively over the past 30 years, relatively little at-tention has been paid to the security of quantum computers. This paper examinesissues related to the security of quantum computers and quantum computing pro-
cess. Our main objective is to shed light on the various attack vectors on quantumcomputing infrastructures.Research into the field of quantum computing gained momentum in the 90swith the discovery of quantum algorithms that could solve some computationalproblems faster than classical computers are known to do [6, 29], [81, 80]. To-day, quantum computers from various suppliers with up to hundreds of qubitsare available to the public. Although quantum computers are unlikely to com-pletely replace classical computers in the foreseeable future, specific applicationsof quantum computers are being investigated in several key areas. In chemistryand materials science, quantum computers will be used to simulate and calculatethe properties of physical systems more precisely than classical computers evercould [39]. Promising applications are being investigated for large-scale optimiza-tion tasks in areas of practical interest such as transport, logistics, or finance [8].Another area of research that has received a lot of attention in recent years isperforming machine learning with the help of quantum computers [17]. In cyber-security, quantum computers will one day be used to factorize large integers andsolve discrete log problems that enable cracking classical cryptographic schemeslike RSA, DSA, and elliptic curves [49].Quantum computers use quantum mechanical effects like superposition, in-terference and entanglement to perform calculations, unlike classical computers,which operate within the framework of classical electricity andmagnetism. To per-form a meaningful task, such systems must be shielded from external influenceslong enough to execute a quantum algorithm. While quantum computers working

Quantum Computing Security 7

at room temperature are being researched, most existing ones require isolatedenvironments and special care and maintenance.Consequently, quantum programs are executed on remote quantum comput-ers, available to quantum software developers via cloud services. Some phasesof their development workflow are performed as classical computation either onend users’ computers or under user’s account on various commercial cloud plat-forms. Classical data transfers also take place between end users and remotequantum computing infrastructures. This way of developing and running quan-tum programs could have important implications for the overall cybersecurity ofthe quantum computing process.We investigated in this direction trying to identify possible vulnerabilities and at-
tack vectors in the most popular quantum computing infrastructures. We looked atthe main quantum computer providers, like IBM and IonQ, and the different waystheir resources could be used by end users. Furthermore, we analyzed the mostpopular quantum software development kits, like Qiskit, and the entire quantumprogramming workflow they imply.The result of our analysis is a set of threat models and attack vectors on the differ-ent phases of the quantum programming workflow. We classified threats relativeto all possible combinations of computing resources an attacker could use andtargets he could aim for: (1) classical attacks on classical computing resources, in-cluding in particular the quantum computing software stack of interest for us here;(2) classical attacks on quantum processing units (QPUs); (3) quantum attacks onclassical computers; (4) quantum attacks on QPUs. We defined threat models foreach such a class and tried to identify attack vectors for them. For some identifiedattack vectors we derived proof-of-concept attacks, like (1) stealing end user authen-tication tokens; (2) corrupting quantum SDKs’ packages to transparently tamperwith end users’ quantum circuits; (3) exploiting the quantum computers’ qubit im-perfect reset to infer results of quantum circuits run before the attacker’s circuit;(4) exploiting the qubit imperfect reset to affect the results of quantum circuits runimmediately after; (5) evaluating impact of qubit cross-talk effects in multi-tenantscenarios. We also researched developing new lattice-based post-quantum crypto-
graphic schemes.By our investigation, we want to raise awareness and provide guidance for bothend users, to protect their data and computers while running quantum programs,and quantum computer providers, to protect their infrastructures against possibleattacks.

Quantum Computing Security 8

Our paper’s is structured in the following way:
• Chapter 2 reviews the main quantum computer providers and the quantumprogramming workflow;
• Chapter 3 defines threat models against today’s quantum computing infras-tructures;
• Chapter 4 describes different attack vectors on the quantum programmingworkflow;
• Chapter 5 details theoretical research and experiments we conducted to val-idate the proposed threat models;
• Chapter 6 recommends some best practices in order to reduce exposure tothe threats we identified;
• The last section concludes the paper.

2 Quantum Computing Overview

2.1 Quantum Bits, Gates, Circuits and Computers
Current computers, which we will refer to as classical computers, operate withinthe limits of classical physics, which assumes that a system can be in only oneobservable state at any given moment. Quantum physics, however, says that asystem can be in a superposition of multiple classical states. Such a state is called a
quantum state and can be expressed as a vector of amplitudes αi, each correspond-ing to a classical state Si, as if the system is in all those states at the same time.Equation 2.1 illustrates the formula for a quantum state. The amplitudes αi arecomplex numbers.

|Ψ⟩ =
N∑
i=1

αi |Si⟩ (2.1)
Quantum computing applies concepts and knowledge from classical computerscience while exploiting phenomena specific to quantum physics with the purposeof executing a computation. The devices buildwith such a purpose are called quan-

tum computers.In classical computers, the minimum unit of information is represented by abit. A bit can have one of two possible values, 0 and 1, which usually correspondto the absence or presence of a voltage across an electrical circuit in a classicalCPU. For quantum computers the minimum unit of information is called a quan-
tum bit or qubit. Physically, a qubit is a system having two energy levels. In thiscase, the physical system can be either a two-state system provided to us by na-ture, such as the spin of an electron or an atomic nucleus, or a physical systemengineered by humans, such as the subspace of the two lowest energy levels ina macroscopic quantum system like a superconducting circuit. Regardless of its

Quantum Computing Security 10

physical realization, the state of a qubit is generally a quantum state. Using the
bra-ket notation a qubit’s basis states are noted |0⟩ and |1⟩, while its quantum stateis a superposition of the two, like in Equation 2.2.

|Ψ⟩ = α |0⟩+ β |1⟩ (2.2)
Measuring a qubit always provides one bit of information, by returning one ofthe two basis states. In the conventional physics interpretation, when a quantumbit is measured, its state collapses randomly from a superposition state into oneof the two available basis states: |0⟩ or |1⟩. |α|2 is the probability of measuringthe state |0⟩, while |β|2 is the probability of measuring the state |1⟩. The sum ofprobabilitiesmust be one |α|2 + |β|2 = 1. This is called the normalization condition.In ket notation, the basis states for a two-qubit system are |00⟩, |10⟩, |01⟩, |11⟩.In general, the state of a system with N qubits has the dimension 2N and its basisstates can be represented either using N digits kets |q1q2 . . . qN⟩ where qi ∈ 0, 1 orvia column vectors with 2N complex entries.Qubits alone are useless for computing unless you can change their state. Thiscould be done by applying a quantum gate to one or more qubits, which can becategorized as 1-qubit (i.e. one-qubit) or n-qubit (i.e. multiple-qubit) gates, re-spectively. In physical terms, a quantum gate usually means that electromagneticpulses are applied to the physical system that implements the qubits. An exam-ple of a one-qubit gate is the X gate used to transform the state |0⟩ to |1⟩ and viceversa.The reason why quantum computers can perform different algorithms thanclassical computers are given by phenomena like superposition, interference, andentanglement. Superposition is a basic property of quantum physics and has al-ready beenmentioned. Interference makes it possible that at the end of a compu-tation, the states corresponding to the answer we want to find will be enhancedwhile the probability ofmeasuring other states is suppressed. Entanglement is dif-ficult to explain in a few words, but it manifests itself as correlations among qubitsthat have no classical analogue. Entanglement between two qubits can be createdusing a Controlled-X gate.Having a universal gate set at our disposal, we can express any quantum com-putation in terms of a quantum circuit, where gates are applied from left to right.While there are other ways to reason about quantum algorithms [98], in quantumcomputing practice a quantum circuit is the preferred abstraction used to describehow quantum gates are applied to qubits to perform a computation.

Quantum Computing Security 11

For a more thorough discussion of quantum computing the reader is referredto [88] for an elementary introduction and to [45] for an in depth treatment.

2.2 Quantum Computer Providers
Several quantum hardware producers have established themselves as key playersin the quantum computing market. Many provide students, researchers, softwaredevelopers and the public in general with access to their infrastructure, enablingusers to upload and execute circuits. This access is typically facilitated through sub-scription models or free limited monthly usage allowances. Many of these com-panies have chosen to embrace the open-source community by making relevantparts of their software stack publicly accessible. This approach ensures that, forthose interested to experiment with quantum computing, the intricate hardware-specific instructions are abstracted away, simplifying the utilization of quantumcomputing resources, but it comes with an associated risk as an attacker mightbe more familiar with the code and the framework and could find ways to exploitthem with malicious intentions.The information in this section reflects the state of affairs at the beginning ofyear 2024 and likely will become outdated relatively soon. The list of startups andcompanies that are developing quantum computers is growing fast. When tryingto review this list, one needs some principles to organize and help make senseof it. A very natural criterion is to categorize the quantum hardware providersby the kind of technology used to build the quantum bits. Furthermore, it makessense to start with the technologies that are more advanced at this moment andhave attracted more users. We do not know which technology or technologies willprove most viable in the long run since each technology has its own advantagesand disadvantages and scaling a quantum computer to hundreds of thousands oreven millions of physical qubits is uncharted territory.Superconducting quantumbits [34, 35] provide one of themost advanced tech-nologies available today. A device with more than 1000 quantum bits has beenunveiled recently by IBM [15]. Other companies using this technology are Google,Rigetti, Oxford Quantum Circuits, IQM, Amazon Web Services, Alice & Bob, NordQuantique, Quantum Circuits Inc, SEEQC, and D-Wave. Today IBM offers publicaccess via the IBM Quantum Platform to many of its quantum computers. UsingAzure Quantum users can access devices from Rigetti and Quantum Circuits Inc.Using Amazon Braket users can access devices from Rigetti and Oxford Quantum

Quantum Computing Security 12

Circuits. IQM offers access to its systems via T-Systems Quantum Cloud. While se-lected users can submit jobs to Google Quantum Computing Service which offersaccess to Google’s quantum devices, public access from Google is not available atthe time of writing.Devices based on trapped ion architectures are developed by companies like:IonQ, Quantinuum, AQT, QuantumFactory, Oxford Ionics and Eleqtron. At thismo-ment IonQ, Quantinuum and AQT offer public access to their quantum computersand various simulators either directly (IonQ) or via cloud platforms like AmazonBraket (IonQ), Azure Quantum (IonQ, Quantinuum) or T-Systems Quantum Cloud(AQT). The number of qubits available at this moment is of the order of only tensof qubits, but devices built around such platform tend to have larger quantum vol-umes, which is a synthetic metric that characterize the overall performance of aQuantum Processing Unit (QPU) [22].Photons can be generated having two different polarization states, which pro-vides a very accessible method to implement a qubit. Quantum computers thatuse photons as qubits are in principle easier to scale but need sophisticated tech-niques for implementing two-qubit quantum gates because photons do not inter-act strongly with each other [82]. Xanadu develops QPUs taking advantage of tech-nology named measurement-based quantum computing [12] while PSIQuantumuses a technique they name fusion-based quantum computing [5]. Such comput-ers can be used to implement familiar gate-based quantum algorithms but canalso be used to develop specialized algorithms 1. Some other companies thatdevelop quantum devices based on photonics technologies are Orca Computing,Quandela, Quix Quantum, and TundraSystems Global. Today, Xanadu offers pub-lic access to simulators and their quantum computers with up to a couple of hun-dred qubits via the Xanadu Quantum Cloud platform.Another technology that has achieved promising results is based on neutralatoms, which uses lasers to cool andmanipulate neutral atoms confined in opticaltraps [99]. A qubit is implemented by different energy states of the same atomand the prospects for scaling up such systems are promising. Similar to ions intrapped ions architectures, atoms can be shuttled, which enables implementationof direct two-qubit gates between any two qubits. Thismakes gates relatively slow,effect which is partially offset by longer coherence times. A few companies de-veloping quantum computers using neutral atoms are PASQAL, Atom Computing,
1Both gate-based and measurement-based quantum computers are universal computers,meaning that they can be used to implement any arbitrary computation.

Quantum Computing Security 13

ColdQuanta, Nanofiber Quantum and QuEra Computing. Today, QuEra offers ac-cess to 256 qubit quantum devices via Amazon Braket while PASQAL offers accessto 100 qubit quantum devices via Azure Quantum and PASQAL Cloud Services.

2.3 Open-Source Quantum Software Development Kits
(SDKs)
Because the landscape of quantum computing software is evolving rapidly, we donot try to provide a comprehensive review here. We will restrict ourselves to dis-cussing briefly several open-source SDKs that are popular today. Besides beinggeneral-purpose quantum programming frameworks, some of these provide ad-ditional libraries and support for approaching problems of practical interest withthe help of quantum computers. These can be categorized into four broad appli-cation areas: (1) solving complex optimization problems, (2) simulating the prop-erties of molecules and materials (3) machine learning and (4) finance. Many ofthose packages provide detailed tutorials, code samples and other kinds of sup-port materials. These constitute valuable learning resources for anybody trying tolearn the basics or to further expand their knowledge in quantum computing.Qiskit [63] is a Python quantum SDK created by IBM and, according to the Uni-tary Fund’s State of Quantum Open Source Software 2023 survey [93] is the mostpopular open-source platform for quantum computing. It implements most ofthe functionalities needed for developing quantum programs and combines goodfeature coverage with excellent learning resources. At the moment of writing, IBMprovides free public access to several 127 qubit quantum computers. Besides thegeneral purpose software package Qiskit itself, there are specialized sub-packagesin Qiskit for applications in chemistry and material science [66], machine learn-ing [65], optimization problems [67] and finance [64]. Using Qiskit users can sub-mit quantumprograms to devices and quantum simulators provided by IBM, IonQ,Quantinuum, Rigetti, AQT, QuTech, and PASQAL.The Qiskit framework started in 2017 with OpenQASM [21] which was initiallyintended to be a circuit description language. Since then, OpenQASM has becomethe de facto standard used for communicating circuits among libraries and quan-tum software packages published by different authors. In its latest version, Open-QASM 3.0 [20], besides describing quantum circuits, provides support for pulsebased quantum programming and declaring fragments of classical code that run

Quantum Computing Security 14

"near" the quantum computer. Here proximity is defined by the fact that the classi-cal code is run by controllers physically near the QPU, but also because it can runwithin the coherence time of qubits. Thus, today the OpenQASM language hasevolved into an intermediate representation of quantum code. Python code de-scribing circuits is typically compiled into OpenQASM code before being compiledfurther into representations that can be executed on QPUs and their controllers.Strawberry Fields [85] from Xanadu is an open-source cross-platform Python li-brary for simulating and executing programs on quantum photonic hardware. Be-sides Strawberry Fields, Xanadu has created PennyLane which is an open-sourceplatform targeting applications of quantum computing in machine learning andchemistry. PennyLane provides a set of plugins [50] that integrate the develop-ment environment with Qiskit, Amazon Bracket, Cirq and Microsoft SDK. BesidesXanadudevices users of these software packages can submit quantum jobs to IBM,IonQ, Quantinuum, Rigetti, AQT and Quantum Inspire, plus a number of quantumsimulators.Cirq [18] is a Python open-source SDK from Google Quantum AI. Google hasalso created TensorFlow Quantum [91] a library for hybrid quantum-classical ma-chine learning and OpenFermion [48], an open-source package for doing chem-istry using quantum computers. Cirq users can submit quantumprograms directlyto AQT, PASQAL, IonQandRigetti. Moreover they can send circuits to AQT, PASQAL,IonQ, Rigetti, andQuantinuumvia AzureQuantumand access simulators from var-ious companies.Tket [95] is an open-source SDK from Quantinuum for the creation and execu-tion of quantum programs. Being hardware-agnostic it provides extension mod-ules that target multiple quantum platforms like Quantinuum, IBM, Rigetti, AQT orIQM. It also facilitates access to theMicrosoft Azure and Amazon Braket cloud plat-forms. Additionally, it provides an extremely performant transpiler and optimizerfor quantum circuits.Forest SDK is an SDK created by Rigetti Computing. Part of this package isPyquil [58] an open source Python library for quantum programming and Quil [70]a quantum instruction language that can be used to write programs that can beexecuted on the quantum devices and simulators from Rigetti.Amazon Braket is a cloud based computing service fromAmazon. Amazon sup-ports the Amazon Braket SDK [2] an open source framework for quantum comput-ing written in Python that enables access to devices and simulators from OxfordQuantum Circuits, Rigetti, IonQ and QuEra.

Quantum Computing Security 15

So far we have discussed mostly Python libraries, but there are programminglanguages dedicated to quantum computing. A representative example is Q# fromMicrosoft [60], a high-level, open-source quantum programming language. Pro-grams written in Q# can be run via Azure Quantum on quantum computers fromIonQ, Qunatinuum, PASQAL, Rigetti and QCI. Another feature of Q# worth men-tioning is that it canbe compiled intoQuantum Intermediate Representation (QIR) [62],an LLVM [92] based intermediate representation for quantum code. Programswritten in a language that targets QIR can be run on any quantum device that sup-ports it.

2.4 Quantum Programming Workflow
In principle, a quantum program could be a piece of code written in a dedicatedprogramming language like, for example, Q#. Today, in practice, a quantum pro-gram is most often represented by somemodule of code developed in Python us-ing a dedicated Python SDK like those mentioned in Section 2.3. In general, sucha Python module contains specifications in code for both classical and quantumcomputations. Quantum computations are laid out in the form of quantum cir-cuits which can be written directly using the Python programming language, cre-ated using a dedicated quantum circuit description language like OpenQASM, orgenerated dynamically using some API provided by the Python SDK.The classical computation runs locally either directly in a Jupyter Notebook onthe user’s PC or under the user’s account on some cloud platform like Azure Quan-tum or Amazon Braket. It could contain simple code helping set up the circuits thequantum program needs or more elaborate code needed for hybrid quantum-classical routines like VQE [94], QAOA [9] or quantum assisted machine learning.The hybrid quantum-classical algorithms run iteratively where quantum circuitsare sent to the quantum computing platform, processed remotely and results sentback to the classical client. After some extra processing, new circuits are generatedand the cycle is repeated until a predefined condition is met and the quantumprogram terminates. What is transferred between the user and the quantum de-vice are always quantum circuits and for this purpose, one uses a data exchangeformats like JSON or the QPY serialization format [68]. Very schematically, every-thing a quantum computer is doing remotely, is to initialize the qubits to |0⟩ state,execute the quantum circuits, measure the results for those qubits we want tomeasure, and report the results back to the user.

Quantum Computing Security 16

A generic quantum circuit cannot be run unmodified on a quantum computer.The reason is that quantum computers provide a limited set of physical gates,which may not coincide with the set of gates used to implement a quantum algo-rithm as a circuit. For such a set of physical gates one needs a minimum of severalone-qubit gates and at least one two-qubit gate like for example the Controlled-Xgate. Also in certain quantum computing architectures, the connectivity betweenqubits is limited which does not permit the implementation of two-qubit gates be-tween arbitrary qubits. More complicated circuits containing chains of Swap gatesmust be used to entangle remote qubits. The process of rewriting a quantum cir-cuit in a form suitable for execution on a quantum computer is called transpiling.This operation can use significant amounts of memory and take long processingtimes for larger circuits and is usually run locally by the user before the circuit issent to the quantum computer. This is also the moment where the circuit is opti-mized. The primary target of optimization is to reduce the depth of circuits whichimplies optimizing gate layout and reducing the number of gates, especially thenumber of two qubit gates.To understand the entire lifecycle of quantum code, we will take a closer lookat the operations performed remotely on the quantum computer provider side.There, quantum circuits belonging to a job submitted by the user are received andwait in a queue until they are scheduled for execution. Most of the circuits arestatic but OpenQASM provides support for specifying simple routines of classicalcode that are executed "in real time", within the coherence time of the qubits, bythe QPU controllers which could be for example FPGA devices. Next, the circuitsare converted to specifications for electric pulse signals which may be microwavepulses in the case of superconducting qubits or laser pulses for trapped ions andneutral atoms. In principle, a pulse program constitute a virtual execution model.This virtual executionmodel is then compiled by a classical coprocessor into the in-struction set architecture (ISA) of the underlying control hardware. Then the circuitis executed on the particular QPU chosen by the user when he submitted the jobto the quantum provider. After the circuit execution has finished, the results areobtained by performing a quantummeasurement on a subset or, on all the qubits.Because quantum algorithms are probabilistic, a circuit is run multiple times. Theuser specifies this as number of shots for his job. As far as we know, all shots runin sequence on the QPU. If a user specifies 1000 shots, 1000 circuits will run inseries and are not interleaved with circuits from another user. After all shots havebeen run, the results for the job are aggregated and sent back to the user.

Quantum Computing Security 17

2.5 Quantum Computers Today
The quantum devices existing today are referred to as NISQ quantum comput-ers, where NISQ stands for Noisy Intermediate-Scale Quantum [54]. One majorfeature which the current generation of computers does not support is quantumerror correction. The lack of quantum error correction means that only limiteddepth circuits can be executed before the computation is overwhelmed by theinherent noise in the quantum gates. The errors for the best quantum gates to-day approach 0.1% for two-qubit quantum gates and are one order of magnitudesmaller for single qubit quantum gates. In the future, when quantum error correc-tion will become available, large depth quantum circuits will be run with an overallerror that can be exponentially suppressed. In order to enable quantum error cor-rection, hundreds or thousands of physical qubits will be needed to implement alogical qubit. An error corrected device having on the order of one million physi-cal quantum bits and one thousand logical qubits will provide results that cannotbe matched by the classical computational methods. While waiting for these ma-chines to become a reality, error mitigation [13] is a technique that can in principlebe used to extract useful results using the NISQ quantum computers existing to-day. Error mitigation improves the accuracy of results obtained using current de-vices with the price of running more circuits. This price is in principle exponentialbut, within a certain domain in circuit size and complexity, it can be used to obtainprecise results as it has been proved in a recent landmark paper from IBM [33].

3 Threat Models

We try to identify in this chapter the possible cybersecurity threats that exist in acomputing environment that provides access to quantum computers. Aswe saw inthe previous chapters, the existing quantum computers are expensive and needspecialized maintenance, so they are hosted by quantum hardware companiesand are made accessible to end users via cloud services.Quantum computers are needed in an attempt to provide better solutions todifficult computational problems than classical algorithms. Most of the problemsthat we know of, that can currently be addressed by quantum-assisted compu-tation are fairly well-understood and relatively specialized. Notwithstanding, thefield is constantly evolving, so new quantum computing algorithms could still bedeveloped. In this context, keeping confidentiality of such new algorithms andtheir input data could be critical, especially in competitive domains like pharma orfinance.By sending to remote cloud services quantum circuits which model quantumalgorithms and their input data, we expose them to different threats, like beingstolen or tampered with. This could happen on communication channels while intransit, in cloud or even on quantum computers, if an attacker succeeds compro-mising one of those resources. In theory, they could be also stolen by untrustedcloud providers. Consequently, the problems the circuits solve could be inferredby the attacker.On another perspective, malicious users could try to use quantum computersfor malicious purposes. It is well known that in the post-quantum age, quantumcomputers could be used to break, at least partially, the classical cryptographicschemes, but we expect them to be used for wider malicious purposes also, likeattacking the quantum circuits and other computations users may run on a quan-tum device.In the arena of cybersecurity, classical and quantum computers interact at sev-

Quantum Computing Security 19

eral contact interfaces, defining an emerging landscape of cyberattacks, which wetry to classify in Figure 3.1.

Classical AttacksonQuantum ComputingSoftware Stack

Classical AttacksonQPU

Quantum AttacksonClassical Computers
Quantum AttacksonQPU

Figure 3.1: The interplay between classical and quantum computing in the arenaof cybersecurity
Classical attacks on quantum computing software stack, which is composed by

classical computing resources, can target user input data or user quantum pro-grams, whichmay contain sensitive intellectual property (IP) in the form of customquantum algorithms. Furthermore, an attacker can alter the quantum circuits auser may wish to run or modify the number of shots or the maximum credits theuser assigns to a particular computation. Such issues and others in the same cat-egory represent a high-impact attack surface on quantum computation, which isanalyzed in Section 3.1, Section 4.1, and Section 5.1.
Classical attacks on quantum processing units (QPUs) can take the shape of spe-cially designed pulses (for those quantum devices that support pulse API), whichcould be used, for example, to alter a quantum device’s calibration. Another clas-sical attack vector on a QPU may be provided by side channels like the radio fre-quency (RF) signal originating from the microwave pulses executed on a quantumdevice. This could be used to steal quantum circuits. Attacks of these types arediscussed in Section 3.2, Section 4.2, and Section 5.2.
Quantum attacks on classical computers is currently understood as the possibil-ity of using quantum computers to break classical cryptographic schemes, com-promising digital signatures, or improving brute-force attacks on symmetric cryp-tography. It has been discussed in this form extensively in literature [49] and is

Quantum Computing Security 20

one of the discoveries that contributed to the rise of interest in quantum com-puting [80, 29]. While such attacks are not yet viable using today’s quantum com-puters, future-proofing security of communication on the internet may already bedesirable for sensitive data like medical records, which need to be kept secret fora long time. A solution to this problem is so called post-quantum cryptography. Wedescribe cybersecurity issues in this category in Section 3.3, Section 4.3, and Sec-tion 5.3.
Quantum attacks on QPUs are somewhat specialized and have a limited impact.However, whatmay seem surprising at first sight is that such attack vectors exist atall. They could take the form of amalicious quantum circuit running on a quantumcomputer, aiming to infer the results of other circuits run on the same quantumcomputer, influence the execution of other circuits, or reverse engineer the QPU.We discuss such attacks in Section 3.4, Section 4.4, and Section 5.4.

3.1 Classical Attacks on Quantum Computing Software
Stack
In this section we try to identify different types of attackers that could target a quan-tum computing infrastructure and its environment. It is, also, important to under-stand what advantages an attacker could take from attacking such infrastructuresand what kinds of malicious actions could perform on it.Let us see, firstly, what an attacker could obtain by attacking a quantum com-puting infrastructure, which are the possible targeted assets and how an attackercould exploit them.

1. One obvious thing an attacker could do is to steal confidential data that livesin the quantum computing infrastructures. This could be, on one hand, end-
users’ data, like authentication credentials, quantum circuits, their parame-ters and results. The latter, in particular, are considered important intellectual
property (IP). On the other hand, leaked data could belong to quantum com-
puter providers and could consist in details about the quantum hardware’sarchitecture and configuration. Such details could also be considered intel-lectual property or, even if not really confidential, could help the attackerdevelop other kinds of attacks.

2. Another advantage an attacker could get from quantum infrastructures is to

Quantum Computing Security 21

make unauthorized use of quantum resources. Running an attacker’s quantumcircuit on behalf of an unaware victimuser, using her paid cloud resources and
quantum running time is an example of this kind.

3. An attacker could be also interested in tampering with an end user’s circuits or
influence their execution. The purpose of such an attack is to affect, or evencontrol, the results of victim user’s circuits, indirectly affecting her business
decisions.

4. Finally, an attacker could be pleased to only perform a denial of service (DoS)attack. This could make quantum resources unavailable to their users, af-fecting the business of both quantum computer providers and their users.Examples of this kind could be: (1) exhaust a user’s cloud or quantum run-ning time credit; (2) overload the quantum job queues maintained in cloudinfrastructures, slowing down the advance of job schedulers and, indirectly,delaying indefinitely results awaited by quantumusers; (3) decalibrate qubitsor damage QPU of quantum computers, making them unavailable to quan-tum users.
In Section 2.4 we saw that different components of a quantum program arerun in different places, i.e. on the end user’s computer, in cloud or on quantumhardware. Data, e.g. quantum circuits and results, could be also stored, processedor in transit between those places. Let us see where the attacker could be posi-tioned relative to that places, quantum programs’ components and data and whatmalicious actions he could perform on them. We try to cover all possible types of

attackers and corresponding attack models, even if some of them are not necessar-ily specific to quantum computing infrastructures, but could target any other kindof computing infrastructures.
1. The attacker could be an anonymous user in internet. In such a case, the at-tacker has no a priori advantage over any component of the quantum in-frastructure, so could only try to target anyone of them using classical attackmethods. For example, he could target quantumusers through social engineer-

ing attacks, trying to trick themdisclose confidential information or could sim-ply search for secret data publicly exposed by mistake. Quantum users couldbe targeted indirectly, through supply-chain attacks, tricking them downloadand use malicious quantum SDKs. The attacker could also target the cloud
services used to access quantum computers and exploit them if vulnerable

Quantum Computing Security 22

(e.g. brute force, broke or avoid flawed authentication, privilege escalation,steal information) as an unauthenticated or authenticated user, or once au-thenticated, target the quantum hardware (e.g. steal architectural details, de-calibrate or perhaps even damage QPUs, steal or influence results of otheruser’s quantum circuits).
2. A relatively small variation of the internet attacker is the local network at-

tacker, i.e. an attacker in the same local network with a quantum comput-ing infrastructure’s user. In addition to the attack capabilities mentioned atitem 1, an attacker of this type could alsomonitor the network traffic betweenthe targeted user and quantum cloud services or could even try to act as
a man-in-the middle. If the communication channel is not cryptographicallyprotected, the attacker could steal confidential information or tamper withthe transferred data.

3. Another kind of attacker could be even closer to an (unaware) quantum com-puting infrastructure’s user, controlling in some way, partially or completely,the user’s computer. Let us call such an attacker the compromised user-system
attacker. There could be more variants of such an attacker, depending onhow much power the attacker has over the compromised user’s computer.For example, the attacker could act remotely, through malicious software in-stalled on user’s computer, or physically, having access to an unattendedcomputer or a stolen one. When acting remotely, the attacker could runmalicious code in an unprivileged or a privilege process. The malicious code,also, could provide the attacker a limited functionality (e.g. trying to escapeinstalled security solutions) or a powerful one. Obviously, a compromiseduser-system attacker will mainly target user’s data and processes, trying tosteal confidential data or tamper with his victim’s circuits and results.

4. The attacker could also be closer to the quantum cloud services or evento quantum computers, i.e. in a position that gives him some advantagesover those resources. Let us called such an attacker compromised-cloud at-
tacker and compromised quantum-computer attacker, respectively. Like a com-promised user-system attacker, the compromised-cloud attacker could havemore or less privileges over the cloud services, depending on which cloudservices, resources or processes he controls, could have remote or physi-cal access to cloud and quantum hardware, could be a sysadmin or just anoutside intruder. However, an attacker like that has more power and attack

Quantum Computing Security 23

capabilities than the other types of attackers, and, also, could compromisemore users and their data. An attacker with physical access to cloud or quan-tum hardware could perform evenmore sophisticated attacks, making reallydifficult to preserve the confidentiality and integrity of quantum user’s data.

3.2 Classical Attacks onQuantumProcessingUnits (QPUs)
Some quantum hardware providers like those developing superconducting qubitsexpose programming APIs that help the user specify the implementation of quan-tum gates at the pulse level. This allows users to create pulse schedules tuned tothe physical characteristics of each qubit and extract the maximum performanceout of a QPU. However, this opens up the possibility that a user can leverage thisfeature to achieve unexpected results, like altering the calibration parameters ofqubits in the case of superconducting quantum computers. Such an attack re-quires running long pulses at frequencies distanced from the qubit resonance fre-quency, which is a nonstandard usage of the pulse API and can be identified insoftware if the pulse schedule is scanned before execution. An attacker would notgain any direct benefits from executing such an attack, but could deteriorate thequality of results for other users. Since superconducting quantum computers arecalibrated several times each day, the impact of such an attack is limited to a fewhours. The Josephson junctions used to create a superconducting qubit are knownto age. This leads to a degradation of the junction’s performance. It is not clear tous if longer lasting effects of such an attack, like damage to the quantum bits, arepossible.Side-channel provide a different attack surface to quantum computing in a sce-nario where the attacker has direct or indirect access to quantum computer powerusage. Monitoring the power usage of a computer is method that have been usedfor performing side-channel attacks in the case of classical processors [71]. Fora quantum computer the most obvious vulnerability would be the power usagedata from the QPU controllers. The target of such an attack would be to reverseengineer quantum circuits. In the case of superconducting quantum computers,this information can be corroboratedwith the RF signals emitted by themicrowavepulses enacting the quantum gates. While gaining access to such informationmaybe tempting for some attackers, the next logical step, namely extracting useful in-formation about the problem approached by the user, is made more difficult bythe fact that these circuits have already been transpiled and optimized.

Quantum Computing Security 24

A different instance of compromised quantum computer scenario would be amalicious userwith access to the hardware provider infrastructure thatmay assigninferior hardware resources to the jobs sent by another user. There are variousreasonswhy somebodywouldwant to do that, like routing higher quality hardwarefor his own use. The victim does not control directly the QPU that actually runs hiscircuits. He only knows what the provider reports back to him. If the provider isunder the control of the attacker, the information sent to the victim can bemanip-ulated. There are mitigation measures that the victim can perform against suchattacks which are discussed briefly in Subsection 4.2.3.

3.3 Quantum Attacks on Classical Computers
3.3.1 Quantum Algorithms and Security on Internet
The security ofmost of themodern cryptographic algorithms is based on the hard-ness of efficiently solving factorization, computing discrete logarithmsor searchingfor a specific item. While Grover’s impact on symmetric encryption schemes suchas AES [56] could be easily countered by doubling the size of the keys, the impactof quantum algorithms on the RSA [72] public key encryption scheme and on theDSA [55] digital signature scheme is devastating. As a consequence, when quan-tum computers will become scalable, the security of our Internet connections willbe completely broken.When an attacker successfully breaches cryptographic schemes, they can un-leash a wide range of threats, significantly undermining the confidentiality, in-tegrity, and authenticity of digital communications anddata. Having access to pow-erful quantum hardware means exactly that. When encryption can be broken, theattacker can intercept, read, and modify the messages between two parties with-out their knowledge, potentially leading to data breaches, eavesdropping, and in-formation theft. If digital signatures are compromised, one can forge identities,creating or altering digital documents and transactions to impersonate legitimateusers, thereby conducting fraudulent activities. Impersonation attacks, facilitatedby breaking cryptographic authentication mechanisms, enable attackers to gainunauthorized access to systems, networks, and sensitive resources, posing as le-gitimate users. This can lead to a wide array of security breaches, including datatheft, system sabotage, and unauthorized transactions, deeply impacting privacy,financial assets, and operational security.

Quantum Computing Security 25

3.3.2 Post-Quantum Cryptography
Post-Quantum Cryptography (PQC) is a modern branch of cryptography that fo-cuses on developing algorithms that are believed to remain secure even againstattacks implemented on quantum computers. The US National Institute of Stan-dards and Technology (NIST), who has been actively involved in standardizing cryp-tographic algorithms for various purposes, initiated in 2016 a project known asthe “Post-Quantum Cryptography Standardization” [46]. The goal of this projectis to identify and standardize the most efficient cryptographic key encapsulationmechanisms and digital signatures that stay secure against quantum attacks. Thesecurity of most of the post-quantum proposals is based on the hardness of solv-ing efficiently computational problems related to lattices, multivariate polynomialsystems, codes or hash functions. The first set of post-quantum cryptographicstandards is expected to be released during 2024 [47].
3.3.3 The Transition to PQC
Once the standardization process will be complete, organizations and industrieswill have to adopt new cryptographic algorithms to ensure the long-term secu-rity of their systems in the post-quantum era. The transition from current cryp-tographic algorithms to post-quantum algorithms is expected to take time, as itinvolves updating protocols, systems, and infrastructure. It is crucial for organi-zations to be aware of the potential risks posed by quantum computers and toplan for a smooth transition to post-quantum cryptographic solutions. NIST, incollaboration with other US agencies like the National Security Agency and the Cy-bersecurity and Infrastructure Security Agency, encourages early planning for themigration to post-quantum cryptographic standards. In pursuit of this goal, theyhave released a Quantum-Readiness Roadmap [69].

3.4 Quantum Attacks on QPUs
The research conducted to date on quantum-on-quantum attacks is based on as-sumptions about how quantum systemswill be used in the future. Although quan-tum computers with over a thousand qubits exist today we do not yet know whatusage patterns will prevail when quantum computers will become commerciallymature. Accessing quantumcomputers is similar to the accessing high-performance

Quantum Computing Security 26

computing resources: service providers host quantumsystems andprovide accessto them as a service. This is indeed the case for almost all systems in operation to-day. Users typically submit a job containing quantum circuits to a cloud endpoint,and the service provider queues the job for asynchronous execution. The user canmonitor the progress of the job and retrieve the results once the job is completed.Today queue times are rising and can be impractical as well as unpredictable. Thisis because the systems available for this kind of computation are scarce comparedto the rising demand. For this reason, it is likely that service providers will move to-wards amulti-tenant, parallel executionmodel. Thismeans thatmultiple users willbe able to execute their jobs on the same quantum system at the same time. Thiswill increase the utilization of the systems and reduce queue times. However, thisalso means that on quantum chips multiple circuits may run simultaneously. Thissignificantly increases the potential for attacks. Almost all research on quantumattacks on QPUs assumes a multi-tenant environment [77, 23]. In this paper wealso present new quantum attacks that can be carried out in a single-tennant sce-nario. For executing such an attack, the attacker and the victim must share somequantum resources or find amethod to use one’s quantum resources to influencethe other’s.Many technologies compete to be the dominant one in the race to build a scal-able quantum computing industry. From a theoretical point of view, to make goodqubits, a technology must satisfy a set of criteria introduced by David DiVincenzo,now known as the DiVincenzo criteria [27]. From an economical point of view, thewinning technology must not be prohibitively expensive to manufacture. From anengineering perspective, it must be scalable, reliable, and, if possible, reuse estab-lished technologies, like semiconductor processing techniques. We can add to allof these that the winning technology must be made secure and invulnerable to at-tacks. Not all technologies have been assessed from a security perspective. To thebest of our knowledge, only superconducting qubits and trapped ions have beenstudied in this regard. It is likely that at this early stage of the quantum computingevolution, each technology has attacks specific to it.In superconducting technology, qubits are made up of electrical circuits thatare cooled down to temperatures close to absolute zero. The qubits are then con-trolled by microwave pulses. In these quantum chips, qubits are laid out on asingle plane. This means there is limited connectivity between them. Each qubitcan only be entangled with its direct neighbors. Another aspect of this technologyis that the same physical qubits are reused for all quantum programs that run on

Quantum Computing Security 27

the chip. This means qubits need to be reset to a reference state before they canbe used again so that each program starts with a clean state [35]. These particu-larities of superconducting technology open up the quantum chip to attacks thatare not possible on other technologies. For example an attacker could take advan-tage of unwanted interference between qubits either to inject noisy informationor extract useful information [75]. This would be an attack based on crosstalk ef-fects. Another form of attack on superconducting qubits could take advantage ofthe fact that the qubits are reused and the reset operation to the |0⟩ state aftereach circuit run is critical for the correct operation of the system. If the reset op-eration is imperfect, residual information from the previous circuit could leak intothe subsequent circuit. A malicious user could take advantage of this and eitherinject information into the circuit that runs after his [89] or read information fromthe previous circuit.In trapped ion technology, qubits aremadeupof individual ions that are trappedin a vacuum chamber andmanipulated using lasers. The qubits are grouped in iontraps in which all qubits connected to each other. Thismeans that any qubit can beentangled with any other qubit. To perform entanglement between qubits in sep-arate traps the ions are shuttled between them. The shuttle operation ads energyto the system and can lead to decreased fidelities on operations performed on allthe qubits in the traps. Assuming the ions in the same trap can belong to differentusers, an attacker could take advantage of this and try to maximize shuttling suchthat a victim that owns qubits in the same traps will be affected [76].

4 Attack Vectors

4.1 Classical Attacks on Quantum Computing Software
Stack
4.1.1 Supply Chain Attacks
Given that many open-source SDKs dedicated to quantum program developmentare actively evolving, they are typically installed within a Python virtual environ-ment. This practice is adopted because these SDKs undergo frequent updatesandmodifications. To use an SDK the user must install it, which can be done usingthe following methods:

1. clone the repository that contains the SDK’s code using a tool such as Git, ifthe SDK is public;
2. use the Pypi [57] platform to install the SDK using pip tool.
Pypi platform can be used by any user to upload Python packages. The up-loaded package is not validated, therefore an attacker can upload malicious pack-ages [84], which a victim can download later on. In our case, an attacker can im-plement and upload a malicious package that is supposed to be a plugin or a tran-spiler for an SDK. A user can install this package believing it to be a legitimate one,giving the attacker the possibility to collect sensitive data or even compromise thevictim’s computer. Attacks of this type are presented in [19], where the maliciouspackage is used to collect data about the victim, execute commands on their ma-chine or even track their activity.

Quantum Computing Security 29

4.1.2 Compromised Quantum User’s Computer
This attack vector involves an adversary who is operating on the quantum user’scomputer and possesses the same privileges as the currently logged-in user. Con-sequently, the attacker benefits of read and write access to the source files ofquantum SDKs. This means they can potentially manipulate or tamper with thesource code, introducing malicious changes that could compromise the integrityand security of the quantum-related software on the user’smachine. Alternatively,the attacker could attach to the processes running the quantum SDK, hooking cer-tain functions of them and executing his own malicious code, tampering with thevictim’s quantum circuits.
4.1.3 Untrusted Transpilers
Today, there are several third-party transpilers, some very reputable like Pytket [59]or QBraid [61], and many others perhaps less known. Some of these softwarepackages promise better performance in terms of the number of two-qubit gatesand the depth of transpiled circuits compared to the compilation tools of stan-dard quantum software toolkits such as Qiskit or Cirq. The use of untrusted third-party transpilers, might provide an attacker with the opportunity to steal circuits.Split compilation [78] and circuit obfuscation methods [87] have been proposedas protective measures against such attacks. Circuit obfuscation works by insert-ing dummy gates such as Controlled-X or Swap at strategically defined points inthe circuit marked by barriers before the circuit is sent to a transpiler, and remov-ing these gates either directly or by adding another Controlled-X or Swap gate atthe known locations before the circuit is sent to a quantum computer. The use ofbarriers to mark the possible insertion points of dummy gates is an obvious lim-itation of this technique, even though this procedure is reported to increase thenumber of gates and the depth of the final transpiled circuit by only 5%. Anothersecurity issue with using such tools is the possibility of injecting Trojan attacks.Subsection 4.4.5 discusses how, in quantum computers shared by multiple ten-ants, crosstalk effects between qubits can be used to perform fault injection andeven DOS attacks. Such observations are likely theoretical today, but it is possi-ble that these attack vectors could become a legitimate security concern at somepoint in the future.

Quantum Computing Security 30

4.1.4 Plain-Text Authentication Tokens
Token based authentication protocol is used to verify the identity of a user thatwants to connect to a cloud service. It replaces the authentication method basedon user and password.Some quantum providers use the token-based authentication. For user conve-nience reasons, quantumvendors implementedmechanisms to store such tokens,like in a:

1. predefined file-system location;
2. environment variable.

See Chapter 6.2.4 for a detailed description of the authentication mechanismsused by different quantum providers.If the token is stored in plain-text, without any kind of encryption, in the ab-sence of any protection mechanism, an attacker who has any type of access to thevictim’s machine can steal this token, without the need for privileged access rights.Alternatively, if the token is stored directly in the code, there is a high risk to beleaked when the code is uploaded to public repositories. The theft of an accesstoken may lead to unauthorized access to critical and confidential information orservices.
4.1.5 Man-in-the-Middle (MitM)
A MitM [7] attack consists in positioning the attacker between two entities thatcommunicate over a network. This attack is common when the communicationchannel is not encrypted. The transmitted information between the user and theweb service can be intercepted or altered.In our case, when a user sends a quantum program to the cloud service, theattacker can tamper with the package that contains sensitive information. The col-lected information can constitute different forms of intellectual property or evencredentials.
4.1.6 DNS / IP Spoofing
Domain Name System (DNS) is a protocol of the internet that provides a mech-anism to resolve the human-readable name of a website to the corresponding IP

Quantum Computing Security 31

address. DNS Spoofing attack aims to redirect the user web-request to amaliciousIP address. The attackers can intercept the DNS requests that should resolve theIP address of a quantum hardware provider and sent back the IP address of aweb-service controlled by them. In this way, every request sent by the user to aquantum provider will be redirected to that malicious address which can collect allthe data sent by the user.
4.1.7 Man-in-the-Browser (MitB)
MiTB [30] attacks aim to infect aweb-browser, with the intention of altering on-the-fly transactions made by the browser. The malware is installed as a plugin to theweb-browser, thus being able to intercept the data that is sent with any request.In the case of quantum providers, a MiTB attack can collect and change theuser’s circuits, credentials or any other sensitive information. An example of suchan attack is described in Subsection 5.1.2.
4.1.8 Denial of Service (DoS)
ADoS attack aims tomake amachine or a service inaccessible to its intendedusers.This attack involves flooding the target in the way that it triggers a crash or stopsworking properly. The cloud services havemultiple points where a DoS attackmayoccur. One example is flooding the authentication APIs with request until it nolonger responds to the users. This type of attack can cause material damage toquantum providers because their infrastructure no longer works for a period oftime.
4.1.9 Untrusted Quantum Providers
If an attacker has compromised and controls the cloud services used to get ac-cess to quantum computers or is an insider attacker managing those services orthe quantum computers themselves, he can access different information regard-ing quantum customers. Such information could be stored in the cloud, like usercredentials, history of run circuits, obtained results etc., or could be about runningjobs. Quantum circuits and their results could be considered intellectual property,therefore leaking or tampering with them may prejudice their owners.

Quantum Computing Security 32

4.1.10 Untrusted Quantum Users
Fromanother perspective, considering the virtual attacker a quantumuser and thevictim a quantum provider, if the latter might want to keep the confidentiality ofparts of their proprietary SDK run on quantumusers’ computers, the formermighttry to leak intellectual property. There could be, for instance, a special transpiler,whose design and functionality its owners want to keep confidential. In such acase, making it open-source is not an option anymore. Alternatively, providing thetranspiler as a binary to be run on quantum users’ computers still exposes it toreverse engineering.A malicious quantum user, or a compromised one, as we noted above, couldalso tamper with the transpiled quantum circuits that are sent to be executed onthe remote quantum computers. Such a circuit could be built with the purposeof tampering with the execution of other users’ circuits, reverse engineering thequantum hardware or even trying to damage it. Next sections will detail aboutsuch kind of attacks.

4.2 Classical Attacks on QPUs
4.2.1 Attacking QPU Calibration Using the Pulse API
Superconducting qubits are characterized by a number of operating parameters.Some examples are the qubit resonance frequency which is given by the energyneeded for the transition from |0⟩ state to |1⟩ state, the anharmonicity1, qubit co-herence times, cross-talk probabilities, gate and readout errors. Each qubit hasslightly different parameters due to the fabrication process. Furthermore, theseparameters drift in time due to environmental factors like temperature or mag-netic fields whose values change slowly with time. Another source of variabilityis material defects propagating in the substrate of the superconducting circuit oreven in the circuit itself. This can change parameters of the qubit materials like thedielectric constant [25].Superconducting quantum computers are calibrated periodically to accountfor these variations. The calibration results are subsequently used by the quan-tum computer providers for building up pulse schedules that implement quantum

1The anharmonicity is given by the difference between the qubit resonance frequency and theenergy difference between second and first excited state.

Quantum Computing Security 33

gates with maximum fidelity and minimum cross-talk effects. Ideally, these pulsesdo not have any effects other than changing the quantum state of the qubits. How-ever, in real life this is only an approximation because real pulses also dump heatinto the qubits [31]. The qubit dissipates energy [51] by coupling to various sourcesof noise like the readout resonator, equilibrium and non-equilibrium quasiparti-cles [16, 86], trapped vortices [96], two-level fluctuators [43] and other degrees offreedom in the qubit environment.We speculate that activating some of these channels can be used to inducesemi-permanent changes in a qubit like altering qubit calibration parameters, pro-vided that off resonancemicrowave pulses with increased power and duration areapplied to the qubits.
4.2.2 Side-Channel Attacks
Side-channel attacks use information extracted from computer hardware to inferinformation about the computation being run. In the context of quantum compu-tation, a possible scenario is a rogue insider with access to the quantum computerenclosure using a device to intercept the radio frequency signals generated by themicrowave pulses enacting the quantum gates. The insider attacker could rely onthis information to reconstruct the circuits run by users. On superconducting ar-chitectures, the pulses executed for each qubit are tuned to the qubit’s frequencywhich is different for each qubit. Thismakes it possible to distinguish pulses target-ing different qubits. Quantum computer controllers’ power usage might provideanother attack surface that can be used to execute a similar exploit. Since circuitsusually are being run in many shots, always in sequence, information collectedfrom multiple runs can be consolidated to extract a cleaner signal.A side channel attack could in principle be executed in the reverse directionas well, where the attacker might use a device to inject faults in the control orreadout pulses generated by the quantum computer controllers as was suggestedhere: [100]. A thorough evaluation of various side-channel attacks relevant forNISQ computers’ era can be found in [101].
4.2.3 Scheduler Attacks
Scheduler attacks are situations where a malicious entity on the quantum com-puter side allocates inferior quantum hardware resources to a client while the

Quantum Computing Security 34

client user has noway of knowingwhat hardware resources have been assigned tohim. Such an attack would result in the attacked side obtaining degraded or evenincorrect results. In [52], quantum physically unclonable functions (QuPUF) areproposed as protection against such attacks. These work as a challenge/responsemechanism by sending specially designed circuits to the quantum computer. Theresult of the execution of these circuits is influenced by the unique hardware char-acteristics of each quantum device, allowing a user to distinguish between differ-ent hardware devices.

4.3 Quantum Attacks on Classical Computers
While the available quantum hardware is not yet powerful enough, various algo-rithms have been already proposed and proven. When the hardware will becomepowerful enough in the future, all these algorithms can be leveraged by an at-tacker in order to challenge the nowadays cryptographic schemes. In this sectionwe’ll discuss some of them and include references for the reader.
4.3.1 Quantum Algorithms

• Simon’s Algorithm, developed by Daniel Simon in 1997 [81], is a quantum al-gorithm that solves a specific problem exponentially faster than any knownclassical algorithm. It identifies a hidden binary stringwithin a black box func-tion, showcasing the potential of quantum computers to outperform clas-sical ones for certain computational problems. Though Simon’s Algorithmitself does not directly break cryptographic schemes, it laid important theo-retical groundwork for subsequent algorithms like Shor’s (listed next).
• Shor’s Algorithm, introduced by Peter W. Shor in 1999 [80], represents a sig-nificant quantum computing breakthrough capable of factoring large inte-gers. Shor’s algorithm can solve these problems in polynomial time on aquantum computer, drastically reducing the complexity and time requiredto break cryptographic systems which use these methods, for example RSA.
• Grover’s Algorithm, devised by Lov K. Grover in 1996 [29], offers a significantquantum computational advantage for searching unsorted datasets. Unlikeclassical algorithms, which require linear time to search through N items,

Quantum Computing Security 35

Grover’s algorithm can find a specific item in approximately square root ofN steps, showcasing a quadratic speedup. This capability is particularly rele-vant to symmetric-key cryptography, where the security of algorithms likeAES depends on the computational effort needed for brute-force attacks.Grover’s Algorithm effectively halves the bit strength of symmetric keys, sug-gesting that key lengths may need to double to maintain equivalent securitylevels against quantum attacks.

4.4 Quantum Attacks on QPUs
4.4.1 The |11..1⟩ State Initialization Attack
Understanding state preparation and measurement (SPAM) errors is essential forworking effectively with a quantum computer. Most users take for granted thatthe qubits are initialized in a well-defined state before a circuit is executed, whichis usually the |0⟩ state. In practice, however, this is not always the case, and some-times the actual state of certain qubits at the beginning of a computation is not
|0⟩. It is interesting to see what effect a bit flip has on a quantum algorithm. Mostof the gates used in quantum computers today are imperfect, but small errorscan be handled in different ways. Incoherent errors always creep in, but, on av-erage, they cancel each other out, and their impact on the outcome of quantumcomputations is relatively suppressed. An important observation in this context isthat incoherent errors are mainly caused by the interaction of the qubits with theenvironment, leading to the leaking of information into the environment, so theoverall impact of these errors must be kept within certain limits. Otherwise, thecomputation is lost. Systematic, coherent errors, on the other hand, do not lead toa loss of coherence, but add up faster than incoherent errors. Coherent errors canbe eliminated in considerable measure by correct qubit calibration and by carefultuning of the microwave pulses used to enact the quantum gates.In contrast to the situation described above, in which the individual errors havesmall magnitudes, a qubit that is initialized in the state |1⟩ instead of |0⟩ can signifi-cantly influence the result of a quantum algorithm. Figure 4.1 shows the results ofrunning the Grover algorithm on 5 qubits in three scenarios where (1) shows theresults of running an ideal Grover algorithm, (2) shows the results of the same al-

Quantum Computing Security 36

Figure 4.1: Results for Grover algorithm on 5 qubits in (1) the ideal case, (2) situa-tion where a V gate is placed on second qubit before the Grover circuit and (3) thecase where a X gate is placed on second qubit before the Grover circuit

Quantum Computing Security 37

gorithmwhere on the second qubit a V gate2 is applied before applying Grover and(3) shows the results where an X gate is applied on second qubit before Grover,simulating the effect of an imperfect qubit reset error. In the ideal situation, thecorrect results are returned with 99% probability. In the second situation, the re-sults are worse, but the state representing the correct result is returned with asufficiently large probability (49%). This means that a user can run such a circuitand extract the right answer, given that he executes a slightly larger number ofmeasurements. In the third case one can see that the computation is completelycompromised.Exploiting this phenomenon of failed qubit initialization, an attacker can at-tempt to compromise the results of a victim executing a job after him. The attackermust ensure that he leaves the quantum register in state |11..1⟩ to maximize thelikelihood of a qubit initialization failure. With a reasonable probability, the at-tacker can expect to influence only the first circuit executed after him. Since anaverage user runs thousands of shots, the impact of such an attack is limited. Avery simple defense against such an attack would be to ignore the results of thefirst shot.The ibm_kyoto quantum computer from IBM has 127 qubits. The estimatedprobability of at least one incorrect reset, given that in the previous run the statewas |11..1⟩, is extremely high. As quantum computers improve, the likelihood ofan initialization error will likely decrease. However, the number of available qubitswill also increase, making the overall probability that such an attack would be suc-cessful, large enough to be a legitimate concern.
4.4.2 Accessing Higher Energy States Attacks
The superconducting circuits used to build superconducting qubits have beennick-named artificial atoms [97] because their energy spectra are qualitatively similarto the energy spectrum of an actual atom and, as with atoms, photons (in thiscase microwave photons) can be used to induce transitions between different en-ergy levels. Since a quantum bit is, by definition, a physical system with two levels,implementing a quantum bit with superconducting circuits requires access to pre-cisely two of these energy levels. Typically, the ground state and the first excitedstate are used for this purpose, with the ground state corresponding to state |0⟩and the first excited state corresponding to state |1⟩. To enact a single qubit gate

2The V gate is the square root of the X gate.

Quantum Computing Security 38

such as the X-gate, which is needed to control transitions between the states |0⟩and |1⟩, the qubit is irradiatedwithmicrowave radiation at the qubit resonance fre-quency. This is usually in the range of 4-8 GHz. The qubit frequency is the energydifference between the ground and first excited states. The microwave photonsmust trigger the transition of the qubit between the two lowest energy levels butmust not excite higher energy states. In principle, this is possible due to the an-harmonicity in the energy levels of the superconducting qubit. The magnitude ofthe anharmonicity is given by the difference between the energy required for thetransition from the ground state to the first excited state and the energy neededfor the transition between the first and the second excited state. This is usually inthe range of 200–400 MHz [34]. While this situation is workable, it is not ideal be-cause, while microwave pulses that activate the quantum gates can be engineeredto target predominantly transitions between the ground state and the first excitedstate, they must be carefully designed to minimize the probability of accessing un-desired higher energy states.Pulses represent implementations of quantum gates as analog microwave sig-nals. Although the pulse-level specifications are not unique to superconductingquantum bits, we will focus on this technology in this section.A pulse schedule is a sequence of microwave pulses scheduled in time. Thepulse specifies a microwave signal that oscillates at a particular frequency. In thecase of pulses that activate individual qubit gates, the frequency is chosen tomatchthe resonant frequency of the qubit. The phase of the microwave signal can beadjusted. For example, by varying the phase with π/2, a pulse implementing anX-gate can be transformed into a pulse implementing a Y-gate. The phase is alsocrucial because the Z-gates, are usually implemented exclusively in software bytracking and adjusting the phase changes [40]. The envelope describes the shapeof the pulse, which changes more slowly. The total area under a pulse is directlyrelated to the amount of rotation it performs. The optimal shape of the pulse isclose to a Gaussian, but not identical [42, 28]. The smooth shape of the envelopeis chosen to suppress coupling to higher harmonics and prevent the qubit fromtransitioning outside the computational sub-space.An attacker could try to do the opposite and use a pulse that makes the tran-sition to higher excited states probable. In principle, the second excited state canbe excited directly by a pulse applied at the energy difference between the groundand second excited state. However, the frequency required for this is high andprobably unavailable on most quantum platforms. Another method to access the

Quantum Computing Security 39

second excited states is to start from state |0⟩ apply a conventional X-gate first andthen use the pulse API to apply a pulsed gate at the frequency corresponding tothe energy difference between the first and second excited state. The frequencyvalue can be taken from the calibration settings of the device or measured exper-imentally [14] by running certain circuits. The specific frequency required is lessthan the qubit resonant frequency by the amount of qubit anharmonicity andmayor may not be available.However, there is amore straightforwardmethod to partially access the higherenergy states that an attacker can easily exploit by performing pulses that cou-ple to higher harmonics. One method is to execute a relatively long pulse at thequbit resonance frequency, having a rectangular shape. The effects of this attackare similar to the effects of the attack described in the previous section becauseit increases the probability that in the next shot some qubits are not initializedproperly. Our experiments indicate that an attack using a rectangular long pulseis slightly more effective than the |11..1⟩ state initialization attack, resulting in asignificant probability that multiple qubits are initialized incorrectly. Other exper-iments where the second excited state is accessed directly are presented in Sub-section 5.4.2. In principle, the attacker can expect to influence not only the firstcircuit run after him, but also subsequent shots. However, the likelihood for thisto occur is exponentially suppressed. Again, a very simple defense against suchan attack would be to ignore the results of the first few shots.
4.4.3 Readout Attacks in Multi-tenant Environments
In readout attacks, the attacker tries to find out the final state of a quantum circuitbelonging to the victim. In other words, to steal the victim’s measured result. If theattack is successful, this leaves the attacker with a value in binary format. Even ifthis value is the true result that the victim measured, this is not enough informa-tion to be useful. But if they can corroborate it with other information, obtainedthrough other means, like what circuit was run, what was the input, what problemthe victim is trying to solve, etc., then this value can be a very valuable piece of thepuzzle.There have been a couple of readout attacks studied so far, all on supercon-ducting qubits. One such possible attack is based on a simultaneous multi-tenantscenario. This is the case where the QPU is shared by multiple users at the sametime. This means different circuits are mapped to different qubits on the chip, and

Quantum Computing Security 40

they can operate and bemeasured independent of other circuits running in paral-lel. In such a case, a readout attack was proposed by A. Ash-Saki and S. Ghoshwhere they use a qubit that is adjacent to the victim’s qubits during measure-ment [75]. They take advantage of the fact that readout error probabilities aredifferent for state |1⟩ and |0⟩ and that this probability correlates with the state ofthe adjacent qubits. In certain cases, they can infer the results of two adjacentqubits using a single attacker qubit.The proposed solution that would fix this vulnerability is for the victim to applya randomized set of qubit flips before measurement. An X gate would be applied,or not, on each of the output qubits right before measuring it. This operation canthen be undone in the post-processing step. Since only the victim knows whichqubits were flipped and which were not, the information obtained by the attackerbecomes irrelevant.
4.4.4 Readout Attacks in Single-tenant Environments
Another type of readout attack that was studied takes advantage of an imperfectreset operation. This also applies only to superconducting qubits. As we men-tioned previously, the qubits in a superconducting chip need to be reset after eachrun so the circuit that executes immediately after can start with all qubits in thereference |0⟩ state. The reset operation is not always perfect in practice, and it istheorized that one can read the information leaked from the previous circuit run.In [41], the authors tried this with notable results. They added circuits that simplymeasure the allocated qubit and found that they can infer the state of the qubit inthe previous run, even when the victim’s qubit was prepared in a superposition.For this attack to work the malicious user must run his circuit immediately afterthe victim’s circuit on every shot. As far as we know this is not the standard way ofoperation on current quantum devices.There are some proposed solutions. One of them involves adding many resetoperations or randomly varying the number of reset operations to make it moredifficult for the attacker to create amodel of the reset. Another solution is to detectattacker circuits before they are run on theQPU and flag them as potential threats.In Subsection 5.4.1 we describe our own experiment for performing a readoutattack on real-world quantum computing systems that are available today.

Quantum Computing Security 41

4.4.5 Cross-Talk Attacks
Crosstalk is a phenomenon where the application of control signals on one qubitcauses unintended effects on another qubit. Uncontrolled residual couplings be-tween qubits are a source of crosstalk errors in quantum computers. In the caseof superconducting qubits, such errors aremore likely to occur between neighbor-ing qubits on the same chip, where, due to their proximity, it is difficult to operateone qubit without affecting the other to some degree. In general, crosstalk errorsoccur with varying strengths in all quantum computing platforms, regardless oftechnology, due to various physical effects [79]. For example, neighboring controllines can cause crosstalk between qubits. Crosstalk errors are systematic [83] andcan be mitigated in various ways, such as by developing special pulse shapes andoptimizing pulse scheduling [44, 26].Using crosstalk effects to execute attacks on a quantum computer was firstproposed in [3]. Taking advantage of the crosstalk effects, a malicious user couldenact a fault injection attack. To carry out such an attack, two users must simul-taneously share the same quantum computer. The attacker would try to inducecrosstalk between his qubits and the qubits used by a potential victim, creatingentanglement between the two circuits. Such an attack can even be upgraded to adenial-of-service (DOS) attack if the attacker, having achieved sufficient entangle-ment, measures his qubits and forces a collapse in the other user’s qubits. Sucha DOS attack is probabilistic and will not always work, but sometimes it will besuccessful.While an attacker does not know in advance which qubits will be assigned tohim, if he submits jobs with small enough circuits, he will increase the probabilitythat the remaining idle qubits will be assigned to another user. An example of a cir-cuit implementing such an attack is shown in Figure 4.2. By applying a Controlled-Xgate, the attacker can create entanglement between his qubits and the victim’s. Ofcourse, applying a single gate has negligible effects, but the repeated applicationof the same gate can significantly increase the effectiveness of such an attack.Instead of Controlled-X gates, an attacker could also use simple X gates. Byplacing an X gate on a qubit next to the victim’s circuit, the attacker will trigger,with some small probability, a bit flip error on an adjacent qubit. The attack canthen be amplified by using more X gates. For example, the attacker could run acircuit on one or two qubits containing a long block of X gates.Crosstalk error rates are not typically reported by hardware vendors in theirdevice characterization, but can be measured by running specially designed cir-

Quantum Computing Security 42

Figure 4.2: An example of a crosstalk attack on a circuit implementing the Groversearch algorithm on 4 qubits. The bottom 5 qubits belong to the victim while thetop two qubits are used to mount an attack. In order for this attack to work, theremust be some non-negligible crosstalk effects between the second and the thirdqubit
cuits [79]. As quantum computers improve, the rate of crosstalk errors will likelydecrease, making such an attack less effective. However, as the quantum devicesimprove, longer circuits will be able to run. As we already pointed out, this effectcan be enhanced by the repeated application of a Controlled-X or X gate on thesame qubits.For a quantum device that supports pulse control [83], this attack vector canbe substantially strengthened. One of the current methods to implement two-qubit gates for superconducting qubits is to apply a microwave pulse on one qubitat the resonance frequency of the other. This is the so-called cross resonancegate [35]. An attacker can use this principle by applying a pulse to one of his qubitsat the resonance frequency of a qubit owned by another user. Our experimentsperformed on the quantum devices from IBM indicate that fairly long pulses canbe applied, greatly enhancing such an attack.A simple defense is to place a layer of unused qubits between two circuits al-located on the same chip. This will lower the crosstalk effects since the crosstalkrates are higher between neighboring qubits. However, this strategy is not per-fect since crosstalk effects are not restricted to adjacent qubits. A more elaboratesolution was proposed in [24] in the form of a quantum antivirus that would scancircuits submitted by the user, making it possible to identify potentially maliciouscircuits. The way this could work is to identify patterns of redundant gates repli-

Quantum Computing Security 43

catedmany times in a larger circuit and flag those circuits. In the same spirit, mostof these patterns can be identified by a transpiler that ignores barrier and delayinstructions and mergers all gates that can be merged logically using simple rulessimilar the rules implemented by the antivirus. If the transpiled circuit has a sig-nificantly smaller number of gates than the original circuit this could raise a flagprompting that this circuit is doingmore than one thing (which should be perform-ing a computation), and perhaps it should be run in isolation.Analyzing a circuit after it has been allocated to a quantum chip and estimatingthe amount of crosstalk it induces on neighboring qubits is possible in principleif one knows the crosstalk rates between qubits. Again, such an analysis couldbe used to flag potentially dangerous circuits. Measuring crosstalk rates betweentwo qubits is possible in principle but when the number of qubits increases thenumber of qubit pairs increases exponentially, so some heuristics should be usedto reduce the number of qubit pairs that need to be considered.
4.4.6 Shuttle Exploiting in Trapped-Ions Quantum Computers
The vulnerabilities of trapped-ion QPUs have been studied significantly less thanthose of superconducting QPUs. However, a recent study [76] has demonstratedthat the shuttling of ions in a trapped-ion QPU can be exploited to execute a faultinjection attack. The shuttling of ions is a process wherein ions are moved fromone trap to another while not altering the quantum state encoded in the qubits.An attacker can exploit this process to launch a fault injection attack on the qubitsassigned to another user.In trapped-ion systems, atoms like Yb (Ytterbium) or Ca (Calcium) are ionizedand confined between electrodes using electromagnetic fields, hence the name"trapped-ion" quantum computer. States |0⟩ and |1⟩ are encoded into the internalstates of the ions. The system features traps interconnected by a shuttle path thatfacilitates the shuttling of ions fromone trap to anotherwhen necessary. Each traphas a capacity it can accommodate. Quantum gate operations on qubits/ions areexecuted using laser pulses. The attack discussed in this section relies on the factthat 2-qubit entangling gates can only be performed on ions located in the sametrap. Therefore, executing gates between ions located in separate traps requiresshuttling ions to co-locate them.The attack model proposed in [76] is based on the observation that repeatedshuttling operations add energy to the ions and decrease the gate operation fi-

Quantum Computing Security 44

delity on them. If the QPU is shared and multiple users are running circuits inparallel, an attacker can attempt to launch a fault injection attack by shuttling ionsto the traps of the victim’s qubits. The attacker can exploit the shuttling process todegrade the fidelity of gates executed on the victim’s qubits.This approachdoesn’t rely ondirectmanipulation of the qubits’ states but ratheron thephysical process specific to trapped-ions quantumcomputing. Twomethod-ologies are possible for generating programs that can launch such attacks. A sys-tematic attack can utilize knowledge of the system’s architectural policies to craft atargeted attack, exploiting specific weaknesses or inefficiencies. A random attackdoes not require prior system knowledge, trading off some level of attack potencyfor ease of execution.One countermeasure to prevent this exploit involves the victim adding a suf-ficient number of dummy qubits to their program to fully occupy a trap, thuspreventing an adversary’s qubit from sharing the same trap and averting shuttle-induced fidelity degradation. The user applies virtual-Z gates to these dummyqubits to ensure the compiler allocates themwithout affecting the actual programsince these gates have perfect fidelity and require no physical operation. How-ever, this strategy introduces a trade-off between security and cost, as using morequbits could lead to higher charges from the quantum cloud provider.Cloud providers can enforce a maximum shuttle limit for programs to preventshuttle-exploiting attacks. If a program exceeds the maximum shuttle count, itcan be scheduled to run in single-programming mode, essentially isolating it fromother programs and eliminating the risk of affecting the fidelity of those programs.While this approach may reduce throughput due to the switch between multi-programming and single-programming modes, the loss can be offset by chargingmore for programs that require a high number of shuttles. This measure ensuresthat high-shuttle programs do not impact others, and the cloud provider does notincur losses.

5 Research, Analysis andExperiments

5.1 Classical Attacks on Quantum Computing Software
Stack
In this section we studied attacks on a quantum computing software stack througha compromised user system. We developed a proof-of-concept (PoC) attack incode, which is accessible at [53]. This PoC demonstrates two basic classical attackvectors identified in the quantum programming ecosystem. In these scenarios,we assume the attacker is running on the local machine of the user, with the sameprivileges that the user has. Using this PoC, the attacker steals the user’s circuits,its authentication token and takes advantages of the victim’s resources like hisquantum cloud credits. The scenarios we tested are detailed in the subsequenttwo subsections.
5.1.1 Attacking the API Authentication Tokens
In this scenario, we simulate an attacker who is already operating silently on thevictim’s machine, searching for different tokens in various predefined locations.An auth token is a unique identifier that allows a user or an application to accessa resource without prompting for login credentials every time. In the quantumecosystem, this token is a gateway to cloud infrastructure and user account, usedto provide access to quantum computers. Themain flow is illustrated in Figure 5.1.The Python module responsible for token discovery is implemented in the to-
ken_discovery.py file, which is available in our public repository. According to ourexperiments, these authentication tokens are stored either directly on the disk orin the environment variables, as follows:

• IBM Qiskit

Quantum Computing Security 46

– Saved on disk in a JSON file in "default-ibm-quantum/token" key. Thepath to the JSON file is:
* Windows: \\users\\<username>\\.qiskit\qiskit-ibm.json
* Linux: $HOME/.qiskit/\qiskit-ibm.json

– Saved in environment variables:
* QISKIT_IBM_TOKEN

* QISKIT_IBM_INSTANCE

* QISKIT_IBM_CHANNEL

• IonQ. Saved in environment variables:
– IONQ_API_KEY

– IONQ_API_TOKEN

– QISKIT_IONQ_API_TOKEN

The malicious program is designed to search in predefined locations for po-tential access tokens. Upon discovering such tokens, they are leaked to a remoteattacker’ site, simulating a Command and Control (C2) server, represented by the
quantum _attacker_c2.py module. In this scenario, the attacker attempts to steal

Figure 5.1: Auth Token - Basic Flow

Quantum Computing Security 47

tokens and use them to access the victim’s cloud account. For our PoC, we at-tempt getting from the victim’s account the list of previously scheduled quantumprograms (i.e. quantum jobs), to determine if we can access the victim’s privateresources. Specifically targeting the IBM Qiskit platform, the discovery process isstraightforward. We utilize the qiskit_ibm_provider package, which provides APIs toquery job history, and simply make the necessary API calls.
provider = qiskit_ibm_provider.IBMProvider(token=stolen_token)
jobs = provider.jobs()
for job in jobs:

job_data = provider.retrieve_job(job.job_id())
for circuit in job_data.circuits():

circuit.draw(output="text")

Additional effort is required for IonQ, as there is no documented API to querya list of previously ran jobs. However, by examining the IonQ website, we discoverthat we can access the job history page. On the browser console, we observe a GETrequest to the following URL: https://api.ionq.co/v0.3/jobs. This allows usto manually craft a request to access the job history. We discovered private APIs(make_path and _get_with_retry) in ionq_client.py file from the qiskit-ionq package.Using these two APIs we manage to build the request path and authenticate witha valid token.
provider = qiskit_ionq.IonQProvider(token=stolen_token)
backend = provider.get_backend(’ionq_simulator’)
client = backend.client

req_path = client.make_path("jobs")
jobs = client._get_with_retry(req_path,

headers=client.api_headers).json()

To obtain the details of the circuits that have been run as part of the job, we re-peat the same process that we used to discover the aforementioned GET request,and inspect the browser console again. In doing so, we notice another GET requestto https://api.ionq.co/v0.3/jobs/<job_id>/program.
for job in jobs["jobs"]:

job_id = job["id"]

https://api.ionq.co/v0.3/jobs
https://api.ionq.co/v0.3/jobs/<job_id>/program

Quantum Computing Security 48

req_path = client.make_path("jobs", job_id, "program")
program = client._get_with_retry(req_path,

headers=client.api_headers)
print(json.dumps(program.json(), indent=4))

If the providers do not have any safeguards in place to protect against tokenleakage, once the attacker obtains the token, it can be used freely and could po-tentially cause additional costs for the victim.A lesson learned from this is to ensure to adhere to best practices. Avoid storingsensitive data in plain text, particularly on the disk or, even more critically, withinthe program itself, as this can lead to accidental inclusion in a public repository.Instead, opt for storing such data in encrypted configuration files. Your programcan decrypt these files when needed, providing an additional layer of security. Inthe event that your private token is accidentally exposed on a public repository,you should promptly revoke it through the cloud platform.
5.1.2 Quantum Circuit Hidden Alteration
An important resource needed to run quantum programs is the framework thathelps the user designing, writing, and sending the circuit to the quantum cloudfor execution. Most of these frameworks are open-source, thus an attacker canidentify vulnerabilities more easily. For the PoC presented below we use IBM’sopen-source Qiskit framework. It is written in the Python programming language,therefore, it is provided as an installable Python package. Like other Python pack-ages, Qiskit package could be installed in per-user package installation directoryor in a virtual environment as recommended by Qiskit documentation 1. Conse-quently, an attacker could access the package installation directory of aQiskit user,supposing he succeeds running code with the same privileges as his victim. In ourPoC we will consider the attack could runmalicious code in one of the victim user’sprocesses.Considering the fact that anyone has access to the source code of the frame-work, one can observe that the user’s circuits go through the function execute _func-
tion.py from the executemodule. Thus, an attacker that tampers with this functioncan intercept and alter victim’s circuits, and even inject his own circuits to be ex-ecuted. In order for an attacker to replace or alter the file mentioned above, the

1https://docs.quantum.ibm.com/start/install

https://docs.quantum.ibm.com/start/install

Quantum Computing Security 49

installation paths of the python packages must be discovered. To achieve this,all running python processes are monitored, as well as those that are going tobe started while the malicious PoC process is running. This way, one can deter-mine the location of the python packages, based on the path of the python exe-cutable and environmental variables. Once the location of the named packages isdiscovered, the original target package file is saved to be restored when needed,and the malicious process replaces it on the disk. Once the execute_function.py fileis patched, every time the user submits a circuit to be executed, the attacker in-tercepts the circuit and sends it to a remote site, simulating a C2 server, whichis represented by quantum_attacker_c2.py module. The corrupted package alsogives the attacker the possibility to add other circuits to be executed. In this case,they are loaded from a predetermined directory. Adding circuits to be executedcan represent an issue because the user might pay for the execution time on theIBMQuantum Platform, and the attacker would run his quantum circuits using thevictim’s paid resources. The malicious process runs for an indefinite time until itis stopped, and then the altered files are restored to their originals to leave notraces. All mentioned steps are implemented in the patcher.py module from thepublic repository.On IBM Quantum Platform the user can inspect the state of the submitted cir-cuits. If the submitted circuits are altered or new ones are added, this can be easilyidentified by the user through this platform. To hide these alterations from theuser, a browser plugin can be implemented. In our case, we implement a pluginfor the Firefox browser, so that when the web page is loaded, its content is alteredin favor of the attacker, thus displaying only the user’s original circuits. This pluginis executed only when the web page related to IBM platforms is accessed.A solution to this problem is to provide a method to increase the security ofthe packets that are used by Qiskit. For this scenario, a security solution should beconfigured to monitor the Qiskit packages (i.e. files) and validate their integrity, sothat if they are tried to be altered by an attacker, such an attempt could be blockedor the user warned of the ongoing attack.Reader should note that this type of source-code alteration attack could bedone in other SDK environments for other types of computing, not unique toQiskitor quantum computing in particular.

Quantum Computing Security 50

5.2 Classical Attacks on QPUs
5.2.1 Attacking QPU Calibration Using the Pulse API
We have taken a brief look at several quantum devices from IBM that are freelyavailable and provide pulse level controls like the 127-qubit device ibm_kyoto.Pulses aremicrowave signals characterized by an amplitude, a phase and a shape.The effect of a pulse when applied to a single qubit is to implement a rotation ofthe qubit state on the Bloch sphere [45] around an axis in the X-Y plane whosedirection is controlled by the phase of the pulse. The angle of the rotation is pro-portional to the area under the pulse envelope. Our experiments indicate thatthe frequencies available on IBM Eagle processors range from roughly 10% lessthan the qubit resonance frequency to frequencies as large as 50% higher thanthe qubit resonance frequency. There is a limit on the maximum amplitude of thepulse. The overall length of a pulse can be much larger that the length needed fora typical implementation of an X or a Y gate. Our experiments indicate that pulsesas long as 64 µs can be used to implement a single gate and 1400 such gates can bestringed together on each of the 127 qubits. Such a circuit is valid and runs withouterrors on ibm_kyoto. One single shot will have a runtime of 0.045 seconds but thenumber of shots for each job can be as large as 20000 which seems to indicatethat pulses can be applied to the qubits in a QPU for relatively long times.According to [32] spurious resonances in the photon loss spectrum in super-conducting qubits may indicate couplings of the qubit with environmental degreesof freedom. We have executed a frequency sweep experiment on one qubit fromibm_osaka whose results are shown in Figure 5.2. The first peak on the left indi-cates the qubit resonance frequency. We do not understand the physical explana-tion for the second peak shown on the right, but it may be due to coupling to thereadout resonator.The IBM quantum devices are being calibrated once every several 2 - 4 hours.We considered that trying to run pulse programs with the purpose of affectingthese calibration parameters would be a violation of user license terms, and wedid not perform further experiments.

Quantum Computing Security 51

Figure 5.2: Frequency sweep results for one qubit from ibm_osaka in the 4.4 - 5.2GHz range (left) and the 5.2 - 7.6 GHz range (right)

5.3 Quantum Attacks on Classical Computers
In the last years at Bitdefender we have strengthened our expertise in lattice-based cryptography, which is one of the most promising post-quantum solutions.We have developed standard cryptographic schemes [4] whose security is basedon the hardness of new lattice problems [74] and lattice-based schemes with ad-vanced functionalities and security requirements [36, 37, 1, 38], but also testedother such schemes in practice [90]. We have also worked on the mathematicalhardness foundations of lattice-based solutions, by showing that the underlyingproblems of some NIST proposals are related [73, 11, 10]. Our results have beenrecognized and published at top crypto conferences and our researchers havebeen invited to talk about their work all over the world. We strongly believe thatquantum computers will become a reality soon, and we are putting all our effortsinto getting ready, both from a quantum and a post-quantum perspective.

5.4 Quantum Attacks on QPUs
5.4.1 Experiments on Qubit Reset Attacks
Almost all research about quantum attacks on QPUs published until the time ofwriting assumes some kind ofmulti-tenant environment [77, 23]. Our investigationin this section is centered around attacks on quantum systems that are possiblewith the technology available today where we do not assume multi-tenancy. We

Quantum Computing Security 52

specifically focus on superconducting qubits.In a readout attack, the attacker attempts to recover the results of a programexecuted by the victim without interfering directly with the victim’s circuit. Here,the focus is on the last state of the qubits and the measurement operation. Thegoal is to let the victim perform the computation and then steal the end result.In the superconducting technology qubits are reused and must be reset be-tween consecutive shots of a circuit and between different circuits. The reset op-eration to the |0⟩ state after each circuit run is critical for the correct operation ofthe system. If the reset operation is imperfect, residual information from the pre-vious circuit could leak into the subsequent circuit. We explore the idea that theattacker would measure the qubit immediately after the victim runs his circuit andperforms his measurements. The attacker assumes that the reset operation is notperfect and that information measured by the victim is not completely erased.In our experiment, we aimed to test the effectiveness of the reset operation onibm_osaka. We targeted the first seven qubits of the chip. We imagined a victimwho runs a 7-qubit quantum circuit that ends with measurements on each qubit.The attacker has no prior knowledge about the victim’s prepared state or circuit.He tries to recover the statemeasured by the victim by simplymeasuring the samequbits. In our attack model we assume that the victim runs their circuit multipletimes and the attacker has the ability to consistently run a measurement circuitimmediately after each shot of the victim’s circuit.IBM quantum chips are accessible through a cloud infrastructure. A user hasthe ability to submit a job of one or more circuits to the cloud, where it is queuedfor execution. Each job contains a set of circuits and a shot count. The circuitswill be executed the number of times specified by the shot count. The resultscan be returned aggregated per result pattern or separately for each shot. If theuser submits a list of circuits, then on each shot, all circuits will be executed. Thismeans that on the first shot, the QPU runs all circuits, then moves on to the nextshot where it runs all circuits again, and so on.To perform our experiment, we needed to ensure the attacker’s circuit, con-taining only measurements, is always run after the victim’s circuit. For this we ranjobs with a list containing the victim and attacker circuits. This should have thedesired outcome of the two circuits running in sequence for each shot and notbe interrupted by other circuits. We have to note here that this requires a newassumption. We assume that the reset operation performed between separatecircuits in the same job is the same as the one performed between jobs. For map-

Quantum Computing Security 53

ping our circuits on the physical devices, we performed transpilation and checkedthat the mapping was performed as expected for each circuit. This is importantbecause we must be sure that the physical qubits measured by the attacker’s cir-cuit are the same ones prepared and measured by the victim. We also made surethat the qubit ordering was the same.The backend we used, ibm_osaka, is a superconducting chip that has 127 phys-ical qubits. The IBM system reports the last calibration time and some error pa-rameters for each physical qubit. Of interest for our experiments is the probabilityof measuring 1 if the measured qubit is in state |0⟩. We note this property for thefirst 7 qubits of the chip (qubits 0 to 6).We start with a control setup where the victim’s circuit ends in the |0⟩ statefor each qubit. To prepare this circuit, we apply an X gate to each qubit to flip allof them to state |1⟩. We then apply a barrier to prevent the transpiler built intoQiskit from optimizing away the initial X gates. Then we apply another X gate oneach qubit to bring them back to state |0⟩. We apply another barrier, followed bymeasurement gates on all qubits. As a side note, the barrier has no role in circuitexecution; it is used only at transpilation time and for visualization. The attacker’scircuit consists only of measurement gates on all qubits.

(a) (b) (c)
Figure 5.3: Control experiment design (created using IBM Quantum) (a) Victim’scircuit (b) Attacker’s circuit (c) IBM Osaka backend with the qubits used highlighted

When we transpile the circuits we use a coupling map to ensure our circuit ismapped to qubits 0 to 6 on the chip. After transpilation, wewrap the two circuits ina list and submit them for execution, setting 19,000 shots. The backendwill run thepair of circuits (the victim circuit followed by the attacker circuit) 19,000 times. Onan ideal quantum computer, the result of executing a victim circuit should matchthe prepared ’0000000’ state in 100% of times. On a real QPU, we expect to see

Quantum Computing Security 54

some results that differ from the prepared state. We go through the results to findall shots where themeasured state for the victimwas not ’0000000’. In these cases,we discard both the victim and attacker results. We then go through the remainingresults for the attacker and count howmany times each qubit wasmeasured as ’1’.We compute the probability of measuring ’1’ for each qubit. Likewise, we performthis procedure 15 times.In this control setup, there is no information in the victim’s circuit since the pre-pared state is the ground state. We expect the attacker’s probability of measuring’1’ to match the probability of measuring ’1’ when the state is |0⟩, as reported byIBM Q, for each qubit. We find this to be true within the range of shot noise asshown in Figure 5.8.In the next phase of our experiment, we prepare the victim’s circuit such that itends in the |1⟩ state for each qubit. We do this by applying an X gate to each qubitfollowed by a barrier and measurement gates. In this case, the victim’s expectedmeasured state is ’1111111’. Just like before, we follow this with an attacker circuitconsisting of only measurement gates. We transpile, keeping the same couplingmap, and submit the pair for execution 19,000 times. We filter out all results wherethe victim’s measured state was not ’1111111’. We go through the remaining re-sults for the attacker’s measurements and count how many times each qubit wasmeasured as ’1’. We compute the probability ofmeasuring ’1’ for each qubit. Again,we perform this entire execution 15 times.In this case, after the victim’s circuit ran, the qubits were left in an excited state.There is a possibility that the reset was imperfect and that some residual informa-tion was left in the qubits for the attacker to measure. We want to see how theattacker’s probability of measuring ’1’ in this case compares to the probability ofmeasuring ’1’ when the victim’s state is |0⟩ for each qubit. We plot the results inFigure 5.8. The figure shows the probability of the attacker measuring ’1’ for eachqubit. For each qubit, we show 30 probability points. The 15 points in blue repre-sent the probability of the attacker measuring ’1’ when the victim measured ’0’ forthat qubit. The 15 points in red represent the probability of the attackermeasuring’1’ when the victim measured ’1’.We can see that the reset operation efficiency is different for each qubit. Wecan also see that it is not correlated with the measurement error per qubit. Forqubit 6, there is a consistently higher probability of the attackermeasuring ’1’ whenthe victim measured ’1’ versus when the victim measured ’0’. This means that theattacker has a high chance of discriminating between the two possible states of

Quantum Computing Security 55

Figure 5.4
Figure 5.5: Probability of measuring ’1’ when state is |0⟩, measured vs reported byIBM (created using IBM Quantum)

Quantum Computing Security 56

(a) (b) (c)
Figure 5.6: Information leak experiment (created using IBM Quantum) (a) Victim’scircuit (b) Attacker’s circuit (c) IBM Osaka backend with the qubits used highlighted

Figure 5.7
Figure 5.8: Attacker measuring ’1’ when victim measured ’0’ vs ’1’ (created usingIBM Quantum)

Quantum Computing Security 57

the victim’s measurement. For qubit 2, the probability of success for the attackeris much lower since the two cases are less distinguishable. We can also note herethat, in all cases, the probability of the attacker measuring ’1’ increased on averagewhen the victim’s state was ’1’.Based on these results, we try to create a model that can predict the victim’sstate for each qubit. We repeat the above experiments, preparing the victim’smea-sured state in different patterns. We then againmeasure the attacker’s probabilityof getting ’1’ for each qubit. Furthermore, we set a threshold for each qubit. If theattacker’s probability of ’1’ is higher than the threshold, we assume the victimmea-sured ’1’ for that qubit. If not, we assume the victim measured ’0’. The thresholdwas set as the highest blue point in the figure Figure 5.8 for each qubit.We used 56 different patterns with an equal number of ’0s’ and ’1s’ for eachqubit. The accuracy of the model is plotted in the table Table 5.1 Note that a ran-dom guess would yield an accuracy of 50%.
Qubit 0 Qubit 1 Qubit 2 Qubit 3 Qubit 4 Qubit 5 Qubit 6
57% 84% 64% 75% 66% 91% 100%

Table 5.1: Accuracy of the model for each qubit
As stated beforewe assumed that the reset operation performed between sep-arate circuits in the same job is the same as the one performed between jobs.Though, after reviewing our paper, IBM stated that ‘reset’ function between jobsdiffers from the ‘reset’ function within jobs. The ‘reset’ function between jobs onIBM quantum systems is longer, with qubits becoming fully thermalized, makingleakage of information between jobs impossible”. We think that further researchis needed to clarify in what conditions this kind of attacks could still be performed.

5.4.2 Fault Injection Attacks
Having seen that information can indeed leak from one circuit to the next, thereis another type of attack that can be performed on superconducting qubits. Eachuser that runs a circuit assumes that prior to the circuit beginning to execute, thequbits are in the ground state. If this assumption is incorrect, the results of run-ning the circuit will be compromised. By leaving the qubits in an excited state, anattacker can influence the result of the next circuit. This would be a fault injectiontype of attack. Since we observed that, for all qubits, there is an increase in the

Quantum Computing Security 58

probability of measuring ’1’ when the previous circuit ended in an excited state,this kind of attack is possible. For a discussion of the relevance and power of thisscheme see Subsection 4.4.1.We present here a new experiment similar to the one presented in the previoussection, but where the roles are reversed. Herewe envision an attacker who runs acircuit immediately before the victim’s circuit. The goal of the attacker is no longerto read the victim’s results, but rather to influence the state of the qubits at thestart of the victim’s execution. To do this he will prepare his qubits in an excitedstate. If the attack is successful, the victim’s circuit will start execution with a set ofqubits that are not all in the |0⟩ state, and consequently, the results of running thecircuit will be affected or in some cases completely compromised.Similar to our previous experiment, we will use the first 7 qubits of ibm_osaka.We prepare two circuits that we bundle-up in a list and run them for a total of19000 shots. This time the attacker’s circuit will run first, followed by the victim’scircuit in every shot. Tomaximize the probability of leaving the qubits in an excitedstate, we take advantage of the pulse library in Qiskit. We will create our own cus-tom pulse that will excite the qubit to the second excited state. For compactnessof notation we will label this as state |2⟩.2 We omit the fine-tuning of the frequencyand amplitude for each qubit and calculate the expected frequency for the pulsesfrom the backend properties reported by IBM. We use a generic amplitude for allqubits. An example of the pulse for one qubit is shown in Figure 5.9. We preparea custom pulse for each qubit. We first apply an X gate to all qubits to bring themto state |1⟩, then we apply the custom pulses to transition each qubit to the sec-ond excited state. After that, we added a barrier and measurement gates. Thislast step, of adding measurement gates, is not necessary and does not seem toinfluence the results significantly.In order to find what is the state of the qubits when the victim’s circuit startsexecution, the victim’s circuit consists of measurements gates placed each qubit.The attacker’s circuit, victim’s circuit, and layout of the qubits used on the backendare shown in Figure 5.10.As in the previous section, we repeated the experiment 15 times. We thengo through the results for the victim’s measurements and count how many timeseach qubit was measured as ’1’ right at the start of the circuit execution, and wecalculate the probability of measuring ’1’ for each qubit.
2The reader should not confuse this with the more common two-qubit state |10⟩ sometimeslabeled in the same way

Quantum Computing Security 59

Figure 5.9: Custompulse to excite a qubit from state |1⟩ to the second excited state
|2⟩ (created using IBM Quantum)

(a) (b) (c)
Figure 5.10: Fault injection experiment (created using IBM Quantum) (a) Attacker’scircuit (b) Victim’s circuit (c) IBM Osaka backend with used qubits highlighted

Quantum Computing Security 60

The results of the victim’s measurements are shown in Figure 5.11. In blue andred are the data points obtained from the experiments presented in the previoussection. They show how the qubit’s starting state is affected when the previousrun has prepared them in state |0⟩ and |1⟩ respectively. The green points showthe probability of measuring ’1’ when the previous run has prepared the qubitsin the second excited state. From analyzing the results, we can conclude that theprobability of the circuit starting in a state different from |0⟩ is increased dramat-ically when the attacker has prepared the qubits in the second excited state. Forall qubits, the probability of starting in state |1⟩ is relatively close to 50% whichrepresents a random chance.

Figure 5.11: Probability of victim qubits starting in state |1⟩ when the attacker hasprepared the qubits in state |0⟩, |1⟩, or the second excited state |2⟩ (created usingIBM Quantum)
Having performed these experiments on seven qubits, we can scale up and seeif the behavior we found generalizes to entire quantum chips. We ran the same ex-periments on all 127 qubits of IBM_Osaka and on all the qubits of IBM_Sherbrooke.The results are shown in Figures Figure 5.12 and Figure 5.13, respectively. From

Quantum Computing Security 61

these two figures, we can draw the same conclusions we drew from our initialseven-qubit experiments: under the stated assumptions, information can leakfrom one execution to the next, and this is a vulnerability that can be exploitedby an attacker either to read the victim’s results or to influence the victim’s ex-ecutions. Moreover, this behavior is consistent across many qubits and acrossdifferent chips. This indicates that more attention must be given to vulnerabilitiesthat can arise from the design and manufacturing of quantum chips.

Figure 5.12: Probability of victim qubits starting in state |1⟩ when the attacker hasprepared the qubits in state |0⟩, |1⟩, or the second excited state |2⟩ for all 127 qubitsof IBM_Osaka (created using IBM Quantum)
As stated beforewe assumed that the reset operation performed between sep-arate circuits in the same job is the same as the one performed between jobs.Though, after reviewing our paper, IBM stated that ‘reset’ function between jobsdiffers from the ‘reset’ function within jobs. The ‘reset’ function between jobs onIBM quantum systems is longer, with qubits becoming fully thermalized, makingleakage of information between jobs impossible”. We think that further researchis needed to clarify in what conditions this kind of attacks could still be performed.

Quantum Computing Security 62

Figure 5.13: Probability of victim qubits starting in state |1⟩ when the attacker hasprepared the qubits in state |0⟩, |1⟩, or the second excited state |2⟩ for all 127 qubitsof IBM_Sherbrooke (created using IBM Quantum)
5.4.3 Exploring the Potential for Cross-Talk Attacks
Cross-talk attacks have been discussed in Subsection 4.4.5. To execute such anattack, the victim and the attacker must share a QPU at the same time. Todaythis scenario is not supported by the existing NISQ devices but could be plausiblein the future when the number of qubits available in quantum computers will in-crease significantly. We will study here results of running the Bernstein-Vaziranialgorithm. We start with the textbook algorithm as a reference. On the secondstep we add additional quantum gates on qubits adjacent to those used for imple-menting the reference algorithm and run the circuit again to study the effects ofnoise induced by the crosstalk effects.A quantum circuit implementing this algorithm is shown in Figure 5.14 alongwith results obtained by executing it on the ibm_kyoto quantum device. Thoughnote that IBM does not allow multiple users to work on a QPU simultaneously,making leakage between users impossible on today’s systems. The two controlgates implement a boolean function that returns the bit-wise product between anarbitrary 5-digit input number and a fixed binary 5-digit mask, which we’ll call ‘s‘.The purpose of the algorithm is to find the number ‘s‘ which, in the ideal case, can

Quantum Computing Security 63

be computed by running the circuit one single time. In practice, due to noise in-herent in current quantum computers, the experimentmust be runmultiple timesand the majority outcome will indicate the correct result. Because we need to domany measurements as opposed to a single one, the quantum advantage is lostin this case, but this is less relevant for our discussion here. For this circuit, thecorrect result is the |00011⟩ state which is a binary representation of the number‘s‘. The ibm_kyoto quantum device has 127 qubits, but we need only 6 qubits forimplementing the Bernstein-Vazirani algorithm for 5-digit numbers.Figure 5.15 shows on the left a subset of the ibm_kyoto qubit map that weused for this experiment, along with the qubit connectivity. The qubits used in thealgorithm are indicated in green and the adjacent qubits where X gates have beenadded are indicated in red. To amplify the cross-talk effect, the additional X gateshave been added on each layer in the circuit. In the same figure, count results fromrunning this extended circuit are shown on the right. The measurement countsplot indicates a significant deterioration of the quality of the results where theprobability for measuring the correct results is reduced by 35%.Figure 5.16 shows on the left the layout for a similar attack where instead ofX gates, Controlled-X gates are placed on adjacent qubits. Here the target qubitbelonging to Controlled-X gate is indicated in red and the control qubit is indicatedin blue. To amplify the cross-talk effect, the additional Controlled-X gates havebeen added on each layer of the circuit. Measurement count results are shownin the same figure on right. In this case, as well, the degradation of the results issubstantial when compared to the results obtained from running the experimentwith no induced crosstalk shown in Figure 5.14.

Quantum Computing Security 64

Figure 5.14: The Bernstein-Vazirani algorithm (left) and results from running it onibm_kyoto (right). The plot on the right showsmeasurement results obtained from10000 shots (created using IBM Quantum)

Figure 5.15: Cross-talk experiments results obtained by placing X gates on qubitsadjacent to the qubits used in the algorithm. On the qubit connectivity map shownon the left, the algorithmqubits are indicated in green and the qubitswhere X gateswere placed are indicated in red. The plot on the right shows measurement countresults obtained from a 10000-shot experiment (created using IBM Quantum)

Quantum Computing Security 65

Figure 5.16: Cross-talk experiment results obtained by placing Controlled-X gateson qubits adjacent to the qubits used in the algorithm. On the qubit connectiv-ity map shown on the left the algorithm qubits are indicated in green, the controlqubits of the Controlled-X gates are indicated in blue while the target qubits of theControlled-X gates are indicated in red. The plot on the right shows measurementcount results obtained from a 10000-shot experiment (created using IBM Quan-tum)

6 Reflections onQuantumComputer
Related Security

6.1 Importance of Our Investigation
In this section we want to analyze the findings of our work and their relevance.We would like to clarify whether they address realistic problems or just theoreticalones, who could they be useful for and in what context and conditions. Finally, ifthe security issues this paper reveals are important, we would like to see how theycould be addressed and who should take care of this.Firstly, let us note that even if the development of quantum computer technol-ogy and quantum algorithms relevant for and applicable to real-life problems isstill an ongoing research, there has been tremendous progress in these fields inthe last couple of years. It is conceivable that in the near future, to have quantumcomputers andquantumprograms thatwill be used for commercial purposes. Notto mention the large community of quantum researchers, who are currently us-ing the nowadays quantum computers. In this context, we think there is no doubtthat looking at how secure quantum computers are and will be, and consequently,how secured their users are, is a very important aspect. Ignoring it could havecritical consequences when quantum computers will be used for real-life relevantthings and cyberattackers will have a great motivation to act against them. Of thesame importance is the fact that quantum computers could be used one day tobreak classical cryptographic schemes currently in use. It is therefore mandatoryfor quantum providers and quantum users to be aware of the security challengesand risks the large-scale availability of powerful quantum computers will raise.Like any other resource, it is of equal importance how secure quantum com-puters are for both their owners and their users. As we saw in previous sections,quantum computer developers have a great interest in keeping their technology

Quantum Computing Security 67

confidential. Similarly, quantum computers’ users want to keep their quantum al-gorithms and data confidential. In the same time, quantumprovidersmust protecttheir resources and their clients.During our investigation, we noted that, overall, the possible attacks on quan-tum computing infrastructures are of the same types as those targeting classicalcomputing resources. There could be, thus, attacks like DoS, tamperingwith differ-ent operations and data, information leakage, escalation of privileges etc. Though,quantum computing infrastructures incorporate both classical and quantum com-puting components and technologies. This means that securing them implies acombination of both classical security mechanisms and quantum specific ones,depending on the type and particularities of the components that are the immedi-ate target of an attack. This is why we tried to classify the possible threat modelsand attack vectors regarding quantum computing infrastructures, based on theclassical and quantum combinations of both targeted components and the attackmechanisms and methods. What is important to note in our classification is thatquantum computers could be both attack weapons and targeted resources. Simi-larly, from a defender’s perspective, quantum computers could be both resourcesto secure and tools used to implement or improve security solutions. Let us reviewour classification, trying to emphasize main aspects we identified and possible so-lutions.

6.2 Attacks and Defenses
6.2.1 Classical Attacks on Quantum Computing Software Stack
In this area there could be any kind of classical attacks targeting classical comput-ing resources. Because access to quantum computers is provided through cloudservices and running a quantum program usually implies both the end user’ com-puter and cloud resources, attacks could target each of the two and the communi-cation channels between them. While most of such attacks (e.g. DoS, MitM, MitB,DNS spoofing etc.) and possible security solutions are well known, and not neces-sarily particular to quantum infrastructures, wewill not review all on them. Still, wetried to identify what could make such classical attacks specific when targeting thequantum software development process. Wemostly focused on end user comput-ers, while not having needed privileges and rights to perform security assessmentsof cloud services and resources. We also considered communication channels be-

Quantum Computing Security 68

tween user computers and cloud to be secured by using classical cryptography, soprotected against classical attacks.One weakness we identified in several popular quantum SDKs was the way
cloud authentication tokensweremanaged. Specifically, those tokens are often savedin plain text (in files or environment variables), without requiring an additional au-thentication factor or having no valability limit set. Consequently, if these tokenswere stolen, the victims could easily be impersonated, allowing the attacker to usetheir cloud credits, access their quantum circuit history, or leak private data. Addi-tionally, we sometimes found that the authentication tokens were placed directlyin source code, meaning that if the source code became public, so would the to-kens. Well-known solutions to this problem include creating short-lifetime tokens,requiring multifactor authentication when using them, storing tokens separatelyfrom source code, and prohibiting hard-coding of tokens.Another vulnerability type we investigated was about the possibility of an enduser to work with corrupted quantum SDK packages.One way to get into troubles like this is having an attacker running malicious
code on an end user’s computer. In such a case, the attacker could tamper withthe victim user’s circuits to steal them, change them, change reported results, in-ject his own circuits etc. Possible solutions against such attacks would be to usea file integrity monitoring tool, configured to monitor and protect specifically thequantum SDK’s files.Another way for an attacker to compromise quantum SDK packages or fileswould be through supply-chain attacks. While this is a very general issue and notin control of an end-user security solution, it happens, most of the time when theuser downloads SDK packages from untrusted sources. A solution against such anattack would be to restrict the user downloading files only from trusted sources,only signed packages, whose authenticity and integrity could be checked based ontrusted certificates, and getting them through trusted channels.A variant of using a trusted, yet attacker compromised quantum SDK, is to usea third party, yet untrusted SDK. In quantum software development context, thiscould happen if, for instance, a third party transpiler would be needed, to makespecial optimizations to a quantum circuit, not provided by the default transpilerincluded in the SDK. Such a transpiler could tamper undetectable with the user cir-cuit, during the transpile phase. Solutions against such attacks could bemonitoringthe SDK’s processes against deviated activity (like leaking info to suspicious sites)and obfuscating the quantum circuit provided to the untrusted transpiler. Still,

Quantum Computing Security 69

these are complex problems requiring future research for a better protection.An important aspect of quantum infrastructure security is about protecting the
intellectual property of quantum customers in the context of untrusted cloud and
quantumproviders. Thismeans that quantumuserswants to run their quantumcir-cuits on quantum computers provided remotely through cloud services, but alsowants to keep their circuits and results confidential in spite of possible compro-mised or untrusted cloud and quantum computer providers. Partial solutions tosuch security problems are known to be, at least for classical computing, so-calledtrusted execution environments (TEEs). Intel SGX is an example of this kind. ATEE is launched and protected during its execution by using dedicated hardwaresupport, such that it could be safely run in an untrusted environment, includingall kind of privileged software (e.g. hypervisor, operating system) and users (e.g.sysadmins). A TEE’s integrity can be attested remotely and during the attestationprocess a trusted (i.e. encrypted) channel is establishedbetween the TEE and its re-mote client. This way a quantum user could send her encrypted quantum circuitsto the remote TEE, which can process and send them to the quantum computerto be run. While being in transit between user and TEE and processed in the TEE,the quantum circuits are protected. Though, it is not clear if this holds anymorewhen being sent to the quantum computer, while this means that they are out ofthe TEE not encrypted, in the untrusted environment. We could not evaluate howmuch confidential information, relative to the original circuit, an attacker control-ling that environment is able to extract, because we had no detailed informationregarding the final format of quantum circuits that are run on the quantum com-puters. Therefore, completely protecting the confidentiality of quantum circuitsremains a challenge to be further researched.From another perspective, quantum providers might want to keep the confi-
dentiality of their proprietary SDKs run on untrusted quantum users’ computers. Thiscould be the case, for instance, for particular transpilers, whose functionalitymightwant to be kept confidential and the transpiled circuits trusted in order to be runsafely on quantum computers. Similarly to keeping confidentiality of quantumusers’ circuits, a possible solution to this kind of threat would be to run the SDKin a TEE, whose integrity could be attested remotely by quantum providers beforebeing transferred the SDK. Even more, the resulted transpiled circuits would notleave the TEE unencrypted and unsigned, such that their integrity could also bechecked by quantum providers before running them on quantum computers.

Quantum Computing Security 70

6.2.2 Classical Attacks on QPUs
We have presented in this paper several attacks on QPU, both classical and quan-tum attacks. Classical attacks on QPU could be side-channel attacks or attacksbased on pulse level APIs. For side-channel attacks, insider access to quantumcomputer enclosure or power usage is needed, which makes preventing such at-tacks simple to implement, at least in principle. For pulse-based attacks, the quan-tum computermust expose a pulse API. While some quantum computer providersprovide today this kind of access to help the user experiment and extract themostperformance of current NISQ devices, it is unknown if similar access will be avail-able on tomorrow’s quantum computers. We did not provide evidence here thatusing pulses one can impact qubit calibration, to avoid breaking user license termsbut, in our opinion this can likely be done. In such a case, the frequency and lengthof pulses available to the users should be restricted more than what is permittedtoday.
6.2.3 Quantum Attacks on Classical Computers
The time horizon for being feasible to execute quantum attacks on classical com-puter encryption schemes is probably longer than the next several years. How-ever, attacks where data is collected today to be decrypted later are perfectlypossible. In this context, the migration to quantum-resistant encryption schemesshould be approachedwith high priority, at least for those applications where datais required to remain confidential for a longer time. This transition is a complexprocess andwill not happenovernight. Accordingly, planning this transition shouldbe started sooner rather than later.
6.2.4 Quantum Attacks on QPUs
Quantum attacks on QPU rely on the attacker and the victim sharing some quan-tum resources, or being able to use one’s quantum resource to influence another.An example of the former would be the physical qubits that are being recycled foreach shot in superconducting quantum computers and whose reset operation isimperfect. An example of the latter, unavoidable cross-talk between qubits canbe used in scenarios where two users share the same QPU at the same time. Theprecision of resetting qubits will improve in the future but will probably never beperfect however, since on all quantumplatforms users run their shots in sequence,

Quantum Computing Security 71

defending against an attack involving imperfect qubit reset requires ignoring theresults of the first two or three shots. This is a small price to pay because a typ-ical user runs thousands of shots. Defending against cross-talk attacks could beimplemented as an antivirus that scans against and identifies malicious circuits.Alternatively, a protection could perhaps be implemented in the architecture ofquantum computers themselves.

Conclusions

This work examines the various issues present at the intersection of cybersecurityand quantum computing in the NISQ era, with a focus on security of quantumcomputers in particular.We are approaching a phase in the development of quantum computers inwhich today’s NISQ quantum computers will be replaced by a new generation ofequipment, which will perform practical calculations that are not possible with ex-isting classical computing. In addition with considerations like performance, scal-ability and price, the security of those machines becomes important because atechnology with powerful applications like quantum computing will provide strongincentives for attackers.In addition to reviewing existingwork, we identify new vulnerabilities and attackvectors that make quantum computers susceptible to attacks. Besides the attackvectors which are shared with classical computer systems, quantum-specific at-tack vectors have been discussed. While we attempted a comprehensive approachwhen studying the security of quantum computing, the scope of our investigationswas in part restricted by the need to respect the user licenses of those quantumcomputing companies that provided public access to their systems.We thank IBM for providing feedback on this paper and salute their free publicaccess policy to their quantum computers, whichmade our work possible. We alsopoint out that many of our conclusions can apply to other quantum providers andquantum SDKs and even other cloud-based computational resources.The purpose of our research is to raise awareness and provide guidance forboth end users, on how to protect their data and computers while running quan-tum programs, and for quantum computer providers, on how to begin protectingtheir infrastructures against possible attacks. This work was a joint effort of re-searchers fromBitdefender (https://www.bitdefender.com/) and TransilvaniaQuan-tum (https://transilvania-quantum.com/).

Appendices

Detailed Analysis of Quantum Programming Workflows
on Different Quantum SKS and Providers
Extending the general quantum programming workflow described in Section 2.4,in this section we analyze it in more technical details, using different quantumprogramming frameworks and also different quantum hardware providers.
Qiskit with IBM Quantum Provider

A quantum hardware provider that is used for this exemplification is IBM. To ac-cess their resources, two phases are necessary, one in which the user authenti-cates and one in which it sends the quantum programs. Figure 6.1 describes theauthentication process.IBM provides a python module, called qiskit_ibm_provider to facilitate thecommunication between the Qiskit framework, running on a quantum user’s com-puter and the quantum provider cloud services. This module contains Pythonclasses used for authentication, such as Account, AccountManager, aswell as classesused to process the quantum programs, such as IBMProvider, Backend, IBMJob.Moreover, it offers the possibility to save the user’s token on user’s computer aslocal file in JSON format, such that at the next authentication it could be loadedautomatically from that file.To use the IBM’s quantum hardware, the user must have an account with thisprovider. Once the account is activated, a unique token is assigned to that user,that will be used in the communication with the could services. When the userrenews its token, the old one expires and can no longer be used.The authentication phase begins in step 1 with a GET /api/version request. It

Quantum Computing Security 74

Figure 6.1: Workflow of authenticating on IBM Quantum platform using Qiskit

Quantum Computing Security 75

fetches (step 2) the server version and checks the compatibility between the Qiskitframework and the cloud services. Once the checks are performed, authenticationwill be attempted using the previously mentioned token. This process is carriedout in step 3 through a POST /api/users/loginWithToken request, which sends theuser’s token to the cloud services as illustrated in Listing 6.1.
Listing 6.1: API token for IBM Quantum Platform� �

1 {
2 "apiToken":
3 "e699de4537ab2b80d1263b09902e7fcce910b9b0050270b50ad469dc10d
4 538ba6f6801cc9adba6adb0c23155cca799a6748111f550b0f78340dd0a
5 daecbe65a0"
6 }� �

The response of this request (step 4) contains the authorization key, that is arandom generated token, used until the session time expires, or the user logs inagain using the IBMProvider object. It also contains other information about thecreated session as illustrated in Listing 6.2.
Listing 6.2: Authenticated user information for IBM Quantum� �

1 {
2 "id": " jV0W5f3fuJY4mhIfikuj6HR5MRV862MlTKW87WiRSlUmhIfikuj6H",
3 "ttl": 1209600,
4 "created": "2023-12-11T11:12:19.927Z",
5 "userId": "97369a485c752b06f8272309"
6 }� �

The Qiskit python module only knows in advance the authentication URL forIBM Quantum Platform. In order to find out the URL used to submit circuits, a GET
/api/user/me request is sent (step 5). The response (step 6) contains informationabout the authenticated user, as well as the URL to the APIs where circuits can besubmitted. A sample of such URLs could be seen in Listing 6.3.

Listing 6.3: URLs to submit circuits on IBM Quantum Platform� �
1 {
2 "urls": {
3 "http": "https://api.quantum.ibm.com/api",
4 "ws": "wss://wss.quantum-computing.ibm.com/",
5 "services": {

Quantum Computing Security 76

Figure 6.2: Workflow of using IBM quantum computers with Qiskit
6 "quantumLab": "https://notebooks.quantum-computing.ibm.com",
7 "runtime": "https://api.quantum.ibm.com/runtime"
8 }
9 }
10 }� �

Once the authentication is performed successfully, a circuit can be sent to theIBM Cloud Services to be executed. Figure 6.2 shows the data flow that is trans-mitted between the framework and the cloud services.IBMprovides several quantumhardware onwhich the circuits can be executed,and these are available to a user according to the type of account, either paid orfree. Using the REST APIs provided by IBM, the user can ask for a list of quan-tum systems that can be used, making a GET /runtime/backends/provider=providerrequest (step 3 in Figure 6.2). The response (step 4) contains a list of quantumcomputers as exemplified in Listing 6.4.
Listing 6.4: Quantum computers on IBM Quantum Platform� �

1 {
2 "devices": [
3 "simulator_extended_stabilizer",

Quantum Computing Security 77

4 "simulator_mps",
5 "simulator_statevector",
6 "simulator_stabilizer",
7 "ibm_brisbane",
8 "ibm_kyoto",
9 "ibm_osaka",
10 "ibmq_qasm_simulator"
11]
12 }� �

The transpilation process is done locally if the circuit is executed by IBM hard-ware. Therefore, for this process the hardware details of the chosen backend arerequired. In order to have these details, the framework makes few requests tobuild the Backend object, according to the specifications given by the cloud ser-vices. This process is done automatically by the framework, so that there is nodifference for the user regardless of the chosen backend. For example, the follow-ing requests are sent when using the ibmq_kyoto quantum computer.
GET /runtime/backends/ibmq_kyoto/configuration (step 5)
GET /runtime/backends/ibmq_kyoto/properties (step 7)
GET /runtime/backends/ibmq_kyoto/defaults (step 9)
GET /runtime/backends/ibmq_kyoto/status (step 11)

Once all the necessary information is gathered, the user’s circuit can be tran-spiled, after which it can be sent to the backend. The submission of the circuit ismade through a POST /runtime/jobs request (step 13), which will contain metadataused by the could services along with the circuit which is serialized using the QPYformat. This could be seen in Listing 6.5.
Listing 6.5: Encoded circuit sent to IBM Quantum Platform� �

1 "circuits": [
2 {
3 "__type__": "QuantumCircuit",
4 "__value__":
5 "eJwL9Az29gzhZJBkZoAAxkIG7jQGDiCLGYpBgAmKQYA9ObMouT
6 SzRNfQyMBm4TI1Y5EYturaQkawcibGQgMGVMAIMyMZpiQZpxK4C
7 BuUx8iAHYQauSeWpBaCmGlQIQ6YHFxAQtcl5Lci5wESTGPE0Izd
8 NFTXoniE0TkC7jawkSRYz0SEZ9iR7cJimm9qYnFpEcTZLAICTo
9 Yk8FqSNDBlAz13X8kAFIDAAFO0U="

Quantum Computing Security 78

10 }
11]� �

The response (step 14) to the previously made request contains the id of thecreated job that could be used to fetch the results. Listing 6.6 illustrates an exam-ple of this kind.
Listing 6.6: A job id on IBM Quantum Platform� �

1 {
2 "id": "6hefkcey2i3nwydpoh4f",
3 "backend": "ibmq_kyoto"
4 }� �

The remote job is created and placed in a waiting queue. Considering the factthat several users want to execute circuits using quantum hardware, the resultwill not be available immediately. As a consequence, the framework provides amethod through which the user can monitor the status of a submitted job. It peri-odically checks the status of the job using a GET /runtime/jobs/job-id request (step15) until it is marked as completed.The results are also represented as a dictionary object as illustrated in List-ing 6.7.
Listing 6.7: Results of a job run on IBM Quantum Platform� �

1 "data": {
2 "counts": {
3 "0x5": 9,
4 "0x4": 17,
5 "0x6": 17,
6 "0x2": 17,
7 "0x3": 20,
8 "0x7": 13,
9 "0x0": 19,
10 "0x1": 16
11 }
12 },� �

Quantum Computing Security 79

Qiskit with IonQ Quantum Provider

Figure 6.3 shows the data that is transmitted between the Qiskit framework, run-ning on a quantum user’s computer, cloud services from IonQ quantum provider.To facilitate the communication between these two, IonQ implements a pythonmodule, named qiskit_ionq, that contains vendor specific Python classes, suchas Provider, IonQBackend and IonQJob.To use the hardware from IonQ, an account at this vendor is required. Oncethe account is activated, the user can generate one or multiple API-KEYs that willbe used to transmit data to and from the cloud services.The communication between the Qiskit framework and the cloud services ismade using REST-API requests to https://api.ionq.co/v0.3. The same addressis used both for authentication and submitting quantum circuits. The authentica-tion of the user is made through the field "Authorization: api Key $KEY" inthe header of each request, which is filled with the user’s API-KEY.The first step consists in sending a request to submit the circuit to the cloudservices. The circuits that IonQ expects to receive must be in JSON format, whileQiskit has its own way of storing the information. To maintain compatibility, the
qiskit_ionq module encodes the circuit from Qiskit format in the format requiredby IonQ, using the method described in Listing 6.8.

Listing 6.8: Convert a Qiskit circuit to a IonQ compatible dict� �
1 def qiskit_to_ionq(
2 circuit, backend, passed_args=None,
3 extra_query_params=None, extra_metadata=None
4):� �

The submitted circuit is represented in Listing 6.9.
Listing 6.9: Circuit initialization� �

1 "circuit": [
2 {
3 "gate": "x",
4 "targets": [1]
5 },
6 {
7 "gate": "h",
8 "targets": [0]

https://api.ionq.co/v0.3

Quantum Computing Security 80

Figure 6.3: Workflow of using IonQ quantum computers with Qiskit

Quantum Computing Security 81

9 },
10 {
11 "gate": "h",
12 "targets": [1]
13 },
14 {
15 "gate": "h",
16 "targets": [2]
17 },
18 {
19 "gate": "x",
20 "targets": [1],
21 "controls": [0]
22 }
23]� �

Moreover, someencodedmetadata that provides additional information aboutthe circuit is filled in the request. The encoding consists in converting the datathat is in JSON format into a string, then a compression is applied using gzip, af-ter which a base64 encoding is applied. These steps are executed by method
compress_dict_to_metadata_string.The encoded string found in the request is illustrated in Listing 6.10.

Listing 6.10: Encoded string� �
1 "metadata": {
2 "shots": "128",
3 "sampler_seed": "None",
4 "qiskit_header":
5 "H4sIAMDlcWUC12OQQrCMBBFr1JmrZK2uPEqpQxJCDUwaZykXah4dyelGHU3vPY
6 54QXIjpjpnikuHS9IcGJopGE96uOjtB6qQEzsir8ZOrEPJwPpkV78c23MHgm1yE
7 2bcKU3DGCV0H4cS0QyR9LG0XeoJNvPtp7dNuEG1fb9syPjauNq4132sNvmvb6uoAAAA

↪→ ="
8 }� �

The previously mentioned string is decoded by the cloud services in a JSONobject as illustrated in Listing 6.11.
Listing 6.11: Decoded string as Json file� �

1 {

Quantum Computing Security 82

2 "memory_slots": 3,
3 "global_phase": 0.0,
4 "n_qubits": 3,
5 "name": "circuit-152",
6 "creg_sizes": [
7 ["c0", 3]
8],
9 "clbit_labels": [
10 ["c0", 0],
11 ["c0", 1],
12 ["c0", 2]
13],
14 "qreg_sizes": [
15 ["q0", 3]
16],
17 "qubit_labels": [
18 ["q0", 0],
19 ["q0", 1],
20 ["q0", 2]
21]
22 }� �

In step 2, a response with a JSON object is received (see Listing 6.12), whichcontains information about the job created, including its id. This job identifier canbe used in the next steps.
Listing 6.12: Submitted job id and status� �

1 {
2 "id": "e8d8028d-9494-4853-b782-3061f4b6b5c7",
3 "status": "ready",
4 "request": 5110880341
5 }� �

As previously mentioned, there is a method to wait for the execution of a job.It can be used to know when to move on to the next step. After the program isexecuted, the results can be fetched by the user using a GET /jobs/job-id (step 3)request.Once the quantum program is executed, the response received in step 4 con-tains an additional field, which is the URL fromwhere the user can fetch the results

Quantum Computing Security 83

of the executed program. Listing 6.13 show and example of this kind.
Listing 6.13: URL where results can be obtained from� �

1 {
2 "status": "completed",
3 "results_url": "/v0.3/jobs/1caa40ca-0733-4c22-8ce9-01baf40f85ee/

↪→ results"
4 }� �

Having this URL, the user can get the results by sending aGET results_url request(step 5). The response is a dictionary that contains the results, similar what can beseen in Listing 6.14.
Listing 6.14: Results of a circuit execution� �

1 {
2 "0": 0.125000000,
3 "1": 0.125000000,
4 "2": 0.125000000,
5 "3": 0.125000000,
6 "4": 0.125000000,
7 "5": 0.125000000,
8 "6": 0.125000000,
9 "7": 0.125000000
10 }� �

Cirq with IonQ Quantum Provider

An alternative to Qiskit is Cirq framework that will be explained using IonQ hard-ware. To use the Cirq framework for accessing the IonQhardware from a quantumuser’s computer, a pythonmodule called cirq_ionq is required. The communicationprotocol is largely similar to the case of the Qiskit framework, the difference beingthe content of some packets that are transmitted between the two components,i.e. the user’s computer and the quantum provider cloud services. Cirq uses differ-ent Python classes to abstract circuits, such as Service, Ciruit, Job, Result. Figure 6.4shows the data flow between these two components.The authentication is similar to the case of Qiskit, using the "Authorization:
api Key $KEY" field in the header of each request. To submit a program, a POST

Quantum Computing Security 84

Figure 6.4: Workflow of using IonQ quantum computers with Cirq

Quantum Computing Security 85

/jobs request (step 1) is sent using a specific cloud API. That request contains thecircuit in JSON format as illustrated in Listing 6.15.
Listing 6.15: Cirq circuit definition in JSON format� �

1 {
2 "target": "qpu",
3 "lang": "json",
4 "body": {
5 "gateset": "qis",
6 "qubits": 2,
7 "circuit": [{"gate": "v", "targets": [0]}, {"gate": "cnot", "control

↪→ ": 0, "target": 1}]
8 },
9 "metadata": {"measurement0": "b\u001f0,1", "shots": "100"},
10 "shots": "100"
11 }� �

The response (step 2) has the same format as on Qiskit, containing the id of thenewly created job. The backend creates a job that will be put in a waiting queue,to be executed when scheduled based on some policy.To get the result, periodic GET /jobs/job-id requests are made to check the sta-tus of the job. When the circuit is executed by the chosen backend, the status ofthe job will change, and the result is contained in the request made periodicallyby the framework. This is different from Qiskit, where the result must be takenfrom another URL. The result is represented as a dictionary object as illustrated inListing 6.16.
Listing 6.16: Cirq circuit execution’s results� �

1 "data": {
2 "histogram": {
3 "0": 0.500000000,
4 "3": 0.500000000
5 },
6 }� �

Quantum Computing Security 86

Figure 6.5: Workflow of using IonQ quantum computers with ProjectQ
ProjectQ with IonQ Quantum Provider

Another framework that can be used to execute quantum circuits on IonQ hard-ware is ProjectQ. A difference between it and Cirq is given by the objects usedfor data abstraction. The communication between the framework, running onquantum user’s computer, and the cloud services is made using REST-API requeststo https://api.ionq.co/v0.2. Figure 6.5 shows the data flow transmitted be-tween these two components.The framework can request a list of quantum computers that can be used,mak-ing a GET /backends request (step 1). The response (step 2) contains a list of quan-tum hardware as illustrated in Listing 6.17.
Listing 6.17: List of Ionq quantum computers for a ProjectQ program� �

1 {
2 "backend": "qpu.harmony",
3 "status": "available",

https://api.ionq.co/v0.2

Quantum Computing Security 87

4 "qubits": 11,
5 "average_queue_time": 176025567,
6 "last_updated": 1705500380,
7 "has_access": false,
8 "characterization_url": "/characterizations/b6dd937e-1803-44c3-a3e3

↪→ -9215c8ff6b72",
9 "degraded": false
10 }� �

The POST /jobs request in step 3 is used to submit a circuit. Similar to Cirq, thecircuit is encoded in JSON format. The request has few framework specific fieldsas illustrated in Listing 6.18.
Listing 6.18: ProjectQ circuit submission request structure (only specific fields areshown, the others are simmilar to those in Listing 6.15)� �

1 "metadata": {
2 "sdk": "ProjectQ",
3 "meas_qubit_ids": "[0, 1]"
4 }� �

The response contains the id of the newly created job. Once the program isexecuted, the results are gathered using a GET /jobs/job-id request (step 5).The results are represented as a dictionary of the form state:probability con-tained in the histogram field in the response, as illustrated in Listing 6.19.
Listing 6.19: Circuit initialization� �

1 {
2 "histogram": {
3 "0": 0.500000000,
4 "3": 0.500000000
5 }
6 }� �

Bibliography

[1] Shweta Agrawal et al. “Adaptive Simulation Security for Inner Product Func-tional Encryption”. In: Public-Key Cryptography - PKC 2020. Vol. 12110. 2020,pp. 34–64.
[2] Amazon Braket SDK. https://github.com/amazon-braket/amazon-

braket-sdk-python. Accessed: 2024-02-01.
[3] Abdullah Ash-Saki, Mahabubul Alam, and Swaroop Ghosh. “Analysis ofCrosstalk in NISQ Devices and Security Implications in Multi-programmingRegime”. In: Proceedings of the ACM/IEEE International Symposium on Low

Power Electronics and Design. 2020, pp. 25–30.
[4] Shi Bai et al. “MPSign: A Signature from Small-Secret Middle-Product Learn-ing with Errors”. In: Public-Key Cryptography - PKC 2020. Vol. 12111. 2020,pp. 66–93.
[5] Sara Bartolucci et al. “Fusion-based quantum computation”. In: Nature

Communications 14.1 (2023), p. 912.
[6] Ethan Bernstein and Umesh Vazirani. “Quantum Complexity Theory”. In:

Proceedings of the twenty-fifth annual ACM symposium on Theory of comput-
ing. 1993, pp. 11–20.

[7] Bitdefender. What is a Man-in-the-Middle attack (MiTM)? https://www.
bitdefender.com/consumer/support/answer/49038/. Accessed: 2024-02-07.

[8] Kostas Blekos et al. “A Review on Quantum Approximate Optimization Al-gorithm and its Variants”. In: arXiv preprint arXiv:2306.09198 (2023).
[9] Kostas Blekos et al. “A review on quantum approximate optimization algo-rithm and its variants”. In: Physics Reports 1068 (2024), pp. 1–66.

https://github.com/amazon-braket/amazon-braket-sdk-python
https://github.com/amazon-braket/amazon-braket-sdk-python
https://www.bitdefender.com/consumer/support/answer/49038/
https://www.bitdefender.com/consumer/support/answer/49038/

Quantum Computing Security 89

[10] Madalina Bolboceanu, Zvika Brakerski, and Devika Sharma. “On AlgebraicEmbedding forUnstructured Lattices”. In: IACR Cryptol. ePrint Arch. (2021/053).URL: https://eprint.iacr.org/2021/053.
[11] Madalina Bolboceanu et al. “Order-LWE and theHardness of Ring-LWEwithEntropic Secrets”. In: Advances in Cryptology - ASIACRYPT 2019. Vol. 11922.Springer, 2019, pp. 91–120.
[12] Hans J Briegel et al. “Measurement-based quantum computation”. In: Na-

ture Physics 5.1 (2009), pp. 19–26.
[13] Zhenyu Cai et al. “Quantum error mitigation”. In: Reviews of Modern Physics95.4 (2023), p. 045005.
[14] Calibrate SuperconductingQubits with Pulse. https://github.com/Qiskit/

textbook / tree/ main / notebooks/ quantum - hardware - pulses. Ac-cessed: 2024-02-01.
[15] Davide Castelvecchi. “IBM releases first-ever 1,000-qubit quantum chip”.In: Nature 624.7991 (2023), pp. 238–238.
[16] Gianluigi Catelani et al. “Decoherence of superconducting qubits causedby quasiparticle tunneling”. In: Physical Review B 86.18 (2012), p. 184514.
[17] M Cerezo et al. “Challenges and opportunities in quantum machine learn-ing”. In: Nature Computational Science 2.9 (2022), pp. 567–576.
[18] Cirq. https://quantumai.google/cirq. Accessed: 2024-02-01.
[19] Vlad CONSTANTINESCU. Malicious PyPI Packages Bypass Firewall Restrictions

via Cloudflare Tunnels. https://www.bitdefender.com/blog/hotforsecurity/
malicious-pypi-packages-bypass-firewall-restrictions-via-
cloudflare-tunnels/. Accessed: 2024-02-07.

[20] Andrew Cross et al. “OpenQASM 3: A broader and deeper quantum as-sembly language”. In: ACM Transactions on Quantum Computing 3.3 (2022),pp. 1–50.
[21] AndrewWCross et al. “Openquantumassembly language”. In: arXiv preprint

arXiv:1707.03429 (2017).
[22] Andrew W Cross et al. “Validating quantum computers using randomizedmodel circuits”. In: Physical Review A 100.3 (2019), p. 032328.

https://eprint.iacr.org/2021/053
https://github.com/Qiskit/textbook/tree/main/notebooks/quantum-hardware-pulses
https://github.com/Qiskit/textbook/tree/main/notebooks/quantum-hardware-pulses
https://quantumai.google/cirq
https://www.bitdefender.com/blog/hotforsecurity/malicious-pypi-packages-bypass-firewall-restrictions-via-cloudflare-tunnels/
https://www.bitdefender.com/blog/hotforsecurity/malicious-pypi-packages-bypass-firewall-restrictions-via-cloudflare-tunnels/
https://www.bitdefender.com/blog/hotforsecurity/malicious-pypi-packages-bypass-firewall-restrictions-via-cloudflare-tunnels/

Quantum Computing Security 90

[23] Sanjay Deshpande et al. “Towards an Antivirus for Quantum Computers”.In: 2022 IEEE International Symposium on Hardware Oriented Security and
Trust (HOST). 2022, pp. 37–40. DOI: 10.1109/HOST54066.2022.9840181.

[24] Sanjay Deshpande et al. “Towards an Antivirus for Quantum Computers”.In: 2022 IEEE International Symposium on Hardware Oriented Security and
Trust (HOST). IEEE. 2022, pp. 37–40.

[25] Michel HDevoret, AndreasWallraff, and JohnMMartinis. “Superconductingqubits: A short review”. In: arXiv preprint cond-mat/0411174 (2004).
[26] Yongshan Ding et al. “Systematic crosstalk mitigation for superconductingqubits via frequency-aware compilation”. In: 2020 53rd Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO). IEEE. 2020, pp. 201–214.
[27] David P. DiVincenzo. “The Physical Implementation of Quantum Compu-tation”. In: Fortschritte der Physik 48.9–11 (Sept. 2000), pp. 771–783. ISSN:1521-3978. DOI: 10.1002/1521- 3978(200009)48:9/11<771::aid-

prop771>3.0.co;2-e. URL: http://dx.doi.org/10.1002/1521-
3978(200009)48:9/11%3C771::AID-PROP771%3E3.0.CO;2-E.

[28] Jay M Gambetta et al. “Analytic control methods for high-fidelity unitaryoperations in aweakly nonlinear oscillator”. In: Physical Review A 83.1 (2011),p. 012308.
[29] Lov KGrover. “A FastQuantumMechanical Algorithm forDatabase Search”.In: Proceedings of the twenty-eighth annual ACM symposium on Theory of com-

puting. 1996, pp. 212–219.
[30] PhilippGühring. “Concepts againstMan-in-the-Browser Attacks”. In: https://www2.futureware.at/svn/sourcerer/CAcert/SecureClient.pdf(2007).
[31] E Gümüş et al. “Calorimetry of a phase slip in a Josephson junction”. In:

Nature Physics 19.2 (2023), pp. 196–200.
[32] Eliot Kapit. “The upside of noise: engineered dissipation as a resource insuperconducting circuits”. In: Quantum Science and Technology 2.3 (2017),p. 033002.
[33] Youngseok Kim et al. “Evidence for the utility of quantum computing beforefault tolerance”. In: Nature 618.7965 (2023), pp. 500–505.

https://doi.org/10.1109/HOST54066.2022.9840181
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11%3C771::AID-PROP771%3E3.0.CO;2-E
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11%3C771::AID-PROP771%3E3.0.CO;2-E

Quantum Computing Security 91

[34] Morten Kjaergaard et al. “Superconducting qubits: Current state of play”.In: Annual Review of Condensed Matter Physics 11 (2020), pp. 369–395.
[35] Philip Krantz et al. “A quantumengineer’s guide to superconducting qubits”.In: Applied physics reviews 6.2 (2019).
[36] Benoit Libert, Damien Stehlé, andRaduTitiu. “Adaptively SecureDistributedPRFs from LWE”. In: Theory of Cryptography - 16th International Conference,

TCC 2018. Vol. 11240. 2018, pp. 391–421.
[37] Benoit Libert and Radu Titiu. “Multi-Client Functional Encryption for LinearFunctions in the Standard Model from LWE”. In: Advances in Cryptology -

ASIACRYPT 2019. Vol. 11923. 2019, pp. 520–551.
[38] Benoit Libert et al. “Simulation-Sound Arguments for LWE and Applica-tions to KDM-CCA2 Security”. In: Advances in Cryptology - ASIACRYPT 2020.Vol. 12491. 2020, pp. 128–158.
[39] Sam McArdle et al. “Quantum Computational Chemistry”. In: Reviews of

Modern Physics 92.1 (2020), p. 015003.
[40] David C McKay et al. “Efficient Z gates for quantum computing”. In: Physical

Review A 96.2 (2017), p. 022330.
[41] Allen Mi, Shuwen Deng, and Jakub Szefer. “Securing Reset Operations inNISQ Quantum Computers”. In: Nov. 2022, pp. 2279–2293. DOI: 10.1145/

3548606.3559380.
[42] Felix Motzoi et al. “Simple pulses for elimination of leakage in weakly non-linear qubits”. In: Physical review letters 103.11 (2009), p. 110501.
[43] ClemensMüller et al. “Interacting two-level defects as sources of fluctuatinghigh-frequency noise in superconducting circuits”. In: Physical Review B 92.3(2015), p. 035442.
[44] PrakashMurali et al. “Softwaremitigation of crosstalk onnoisy intermediate-scale quantum computers”. In: Proceedings of the Twenty-Fifth International

Conference on Architectural Support for Programming Languages and Operat-
ing Systems. 2020, pp. 1001–1016.

[45] Michael A Nielsen and Isaac L Chuang. Quantum Computation and Quantum
Information. Cambridge university press, 2010.

[46] NIST Post-Quantum Cryptography Standardization. https://csrc.nist.
gov/projects/post-quantum-cryptography. Accessed: 2024-02-07.

https://doi.org/10.1145/3548606.3559380
https://doi.org/10.1145/3548606.3559380
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography

Quantum Computing Security 92

[47] NIST to Standardize Encryption Algorithms That Can Resist Attack by Quantum
Computers. https://www.nist.gov/news-events/news/2023/08/
nist-standardize-encryption-algorithms-can-resist-attack-
quantum-computers. Accessed: 2024-02-07.

[48] Open Fermion. https://github.com/quantumlib/OpenFermion. Ac-cessed: 2024-02-01.
[49] Ankita Pathare andBharti Deshmukh. “ReviewonCryptographyUsingQuan-tum Computing”. In: International Journal for Modern Trends in Science and

Technology 8 (01 2022), pp. 141–146.
[50] PennyLane Plugins. https://pennylane.ai/plugins/. Accessed: 2024-02-01.
[51] Michael Peterer. “Experiments on multi-level superconducting qubits andcoaxial circuit QED”. PhD thesis. University of Oxford, 2016.
[52] Koustubh Phalak et al. “Quantum PUF for Security and Trust in QuantumComputing”. In: IEEE Journal on Emerging and Selected Topics in Circuits and

Systems 11.2 (2021), pp. 333–342.
[53] POC for classical attacks. https://github.com/Transilvania-Quantum/

quantum-computing-security-investigations. Accessed: 2024-07-01.
[54] John Preskill. “Quantum computing in the NISQ era and beyond”. In: Quan-

tum 2 (2018), p. 79.
[55] FIPS PUB. “Digital signature standard (DSS)”. In: Fips pub (2000), pp. 186–192.
[56] NIST FIPS Pub. “197: Advanced encryption standard (AES)”. In: Federal in-

formation processing standards publication 197.441 (2001), p. 0311.
[57] pypi. https://pypi.org/. Accessed: 2024-02-07.
[58] Pyquil. https://github.com/rigetti/pyquil. Accessed: 2024-02-01.
[59] Pytket. https://cqcl.github.io/tket/pytket/api/. Accessed: 2024-02-01.
[60] Q Sharp. https://learn.microsoft.com/en- us/azure/quantum/

overview-what-is-qsharp-and-qdk. Accessed: 2024-02-01.
[61] qBraid. https://github.com/qBraid/qBraid. Accessed: 2024-02-01.
[62] QIR Alliance. https://www.qir-alliance.org/. Accessed: 2024-02-01.

https://www.nist.gov/news-events/news/2023/08/nist-standardize-encryption-algorithms-can-resist-attack-quantum-computers
https://www.nist.gov/news-events/news/2023/08/nist-standardize-encryption-algorithms-can-resist-attack-quantum-computers
https://www.nist.gov/news-events/news/2023/08/nist-standardize-encryption-algorithms-can-resist-attack-quantum-computers
https://github.com/quantumlib/OpenFermion
https://pennylane.ai/plugins/
https://github.com/Transilvania-Quantum/quantum-computing-security-investigations
https://github.com/Transilvania-Quantum/quantum-computing-security-investigations
https://pypi.org/
https://github.com/rigetti/pyquil
https://cqcl.github.io/tket/pytket/api/
https://learn.microsoft.com/en-us/azure/quantum/overview-what-is-qsharp-and-qdk
https://learn.microsoft.com/en-us/azure/quantum/overview-what-is-qsharp-and-qdk
https://github.com/qBraid/qBraid
https://www.qir-alliance.org/

Quantum Computing Security 93

[63] Qiskit. https://github.com/Qiskit. Accessed: 2024-02-01.
[64] Qiskit Finance. https : / / github . com / qiskit - community / qiskit -

finance. Accessed: 2024-02-01.
[65] Qiskit Machine Learing. https : / / github . com / qiskit - community /

qiskit-machine-learning. Accessed: 2024-02-01.
[66] Qiskit Nature. https : / / github . com / qiskit - community / qiskit -

nature. Accessed: 2024-02-01.
[67] Qiskit Optmization. https://github.com/qiskit-community/qiskit-

optimization. Accessed: 2024-02-01.
[68] QPY Serialization Format. https://docs.quantum.ibm.com/api/qiskit/

qpy. Accessed: 2024-02-01.
[69] Quantum-Readiness: Migration to Post-Quantum Cryptography. https://

www.cisa.gov/resources-tools/resources/quantum-readiness-
migration-post-quantum-cryptography. Accessed: 2024-02-07.

[70] Quil. https://github.com/quil-lang/quil. Accessed: 2024-02-01.
[71] Mark Randolph and William Diehl. “Power side-channel attack analysis: Areview of 20 years of study for the layman”. In: Cryptography 4.2 (2020),p. 15.
[72] Ronald L Rivest, Adi Shamir, and LeonardAdleman. “Amethod for obtainingdigital signatures and public-key cryptosystems”. In: Communications of the

ACM 21.2 (1978), pp. 120–126.
[73] Miruna Rosca, Damien Stehlé, and AlexandreWallet. “On the Ring-LWE andPolynomial-LWE Problems”. In: Advances in Cryptology - EUROCRYPT 2018.Vol. 10820. 2018, pp. 146–173.
[74] Miruna Rosca et al. “Middle-Product Learning with Errors”. In: Advances in

Cryptology - CRYPTO 2017. Vol. 10403. 2017, pp. 283–297.
[75] Abdullah Ash Saki and SwaroopGhosh. Qubit Sensing: A NewAttackModel for

Multi-programmingQuantumComputing. 2021. arXiv: 2104.05899 [quant-ph].
[76] Abdullah Ash Saki, Rasit Onur Topaloglu, and Swaroop Ghosh. Shuttle-

Exploiting Attacks and Their Defenses in Trapped-IonQuantumComputers. 2021.arXiv: 2108.01054 [quant-ph].

https://github.com/Qiskit
https://github.com/qiskit-community/qiskit-finance
https://github.com/qiskit-community/qiskit-finance
https://github.com/qiskit-community/qiskit-machine-learning
https://github.com/qiskit-community/qiskit-machine-learning
https://github.com/qiskit-community/qiskit-nature
https://github.com/qiskit-community/qiskit-nature
https://github.com/qiskit-community/qiskit-optimization
https://github.com/qiskit-community/qiskit-optimization
https://docs.quantum.ibm.com/api/qiskit/qpy
https://docs.quantum.ibm.com/api/qiskit/qpy
https://www.cisa.gov/resources-tools/resources/quantum-readiness-migration-post-quantum-cryptography
https://www.cisa.gov/resources-tools/resources/quantum-readiness-migration-post-quantum-cryptography
https://www.cisa.gov/resources-tools/resources/quantum-readiness-migration-post-quantum-cryptography
https://github.com/quil-lang/quil
https://arxiv.org/abs/2104.05899
https://arxiv.org/abs/2108.01054

Quantum Computing Security 94

[77] Abdullah Ash Saki et al. A Survey and Tutorial on Security and Resilience of
Quantum Computing. 2021. arXiv: 2106.06081 [quant-ph].

[78] Abdullah Ash Saki et al. “Split Compilation for Security ofQuantumCircuits”.In: 2021 IEEE/ACM International ConferenceOnComputer AidedDesign (ICCAD).IEEE. 2021, pp. 1–7.
[79] Mohan Sarovar et al. “Detecting Crosstalk Errors in Quantum InformationProcessors”. In: Quantum 4 (2020), p. 321.
[80] Peter W Shor. “Polynomial-time algorithms for prime factorization and dis-crete logarithms on a quantum computer”. In: SIAM review 41.2 (1999),pp. 303–332.
[81] Daniel R Simon. “On the power of quantum computation”. In: SIAM journal

on computing 26.5 (1997), pp. 1474–1483.
[82] Sergei Slussarenko and Geoff J Pryde. “Photonic quantum information pro-cessing: A concise review”. In: Applied Physics Reviews 6.4 (2019).
[83] Kaitlin N Smith et al. “Programming physical quantum systems with pulse-level control”. In: Frontiers in Physics 10 (2022), p. 900099.
[84] Silviu Stahie. Supply Chain Attack Detected in PyPI Library. https://www.

bitdefender . com / blog / hotforsecurity / supply - chain - attack -
detected-in-pypi-library/. Accessed: 2024-02-07.

[85] StrawberryFields. https://strawberryfields.ai/. Accessed: 2024-02-01.
[86] L Sun et al. “Measurements of quasiparticle tunneling dynamics in a band-gap-engineered transmon qubit”. In: Physical review letters 108.23 (2012),p. 230509.
[87] Aakarshitha Suresh et al. “A quantum circuit obfuscation methodology forsecurity and privacy”. In: arXiv preprint arXiv:2104.05943 (2021).
[88] Robert S Sutor. Dancing with Qubits: How quantum computing works and how

it can change the world. Packt Publishing Ltd, 2019.
[89] Jerry Tan et al. Extending and Defending Attacks on Reset Operations in Quan-

tum Computers. 2023. arXiv: 2309.06281 [cs.AR].

https://arxiv.org/abs/2106.06081
https://www.bitdefender.com/blog/hotforsecurity/supply-chain-attack-detected-in-pypi-library/
https://www.bitdefender.com/blog/hotforsecurity/supply-chain-attack-detected-in-pypi-library/
https://www.bitdefender.com/blog/hotforsecurity/supply-chain-attack-detected-in-pypi-library/
https://strawberryfields.ai/
https://arxiv.org/abs/2309.06281

Quantum Computing Security 95

[90] Bitdefender Cryptography Research Team. Private Set Intersection from Ho-
momorphic Encryption: A Python Implementation. https://bit-ml.github.
io/blog/post/private-set-intersection-an-implementation-in-
python/. Accessed: 2024-02-07.

[91] Tensorflow. https://www.tensorflow.org/quantum. Accessed: 2024-02-01.
[92] The LLVM Compiler Infrastructure. https://llvm.org/. Accessed: 2024-03-01.
[93] The State of Quantum Open Source Software 2023: Survey Results. https:

//unitary.fund/posts/2023_survey_results/. Accessed: 2024-04-01.
[94] Jules Tilly et al. “The variational quantum eigensolver: a review of methodsand best practices”. In: Physics Reports 986 (2022), pp. 1–128.
[95] Tket. https://www.quantinuum.com/developers/tket. Accessed:2024-02-01.
[96] Chen Wang et al. “Measurement and control of quasiparticle dynamics ina superconducting qubit”. In: Nature communications 5.1 (2014), p. 5836.
[97] GöranWendin and VS Shumeiko. “Quantumbits with Josephson junctions”.In: Low Temperature Physics 33.9 (2007), pp. 724–744.
[98] John van de Wetering. “ZX-calculus for the Working Quantum ComputerScientist”. In: arXiv preprint arXiv:2012.13966 (2020).
[99] Karen Wintersperger et al. “Neutral atom quantum computing hardware:performance and end-user perspective”. In: EPJ Quantum Technology 10.1(2023), p. 32.
[100] Chuanqi Xu, Ferhat Erata, and Jakub Szefer. “Classification of quantumcom-puter fault injection attacks”. In: arXiv preprint arXiv:2309.05478 (2023).
[101] Chuanqi Xu, Ferhat Erata, and Jakub Szefer. “Exploration of Quantum Com-puter Power Side-Channels”. In: arXiv preprint arXiv:2304.03315 (2023).

https://bit-ml.github.io/blog/post/private-set-intersection-an-implementation-in-python/
https://bit-ml.github.io/blog/post/private-set-intersection-an-implementation-in-python/
https://bit-ml.github.io/blog/post/private-set-intersection-an-implementation-in-python/
https://www.tensorflow.org/quantum
https://llvm.org/
https://unitary.fund/posts/2023_survey_results/
https://unitary.fund/posts/2023_survey_results/
https://www.quantinuum.com/developers/tket

Authors’ contactsMădălina Bolboceanu: mbolboceanu@bitdefender.comSorin Bolos, : sorin.bolos@transilvania-quantum.comAdrian Coles, a: acolesa@bitdefender.comAndrei Kisari: akisari@bitdefender.comAndrei Lut,as, : vlutas@bitdefender.comDan Lut,as, : dlutas@bitdefender.comRadu Mărginean: radu.marginean@transilvania-quantum.comAndrei Muntea: amuntea@bitdefender.comRadu Portase: rportase@bitdefender.comMiruna Ros, ca: mrosca@bitdefender.com

Public resources
https://github.com/Transilvania-Quantum/quantum-computing-security-investigations

https://github.com/Transilvania-Quantum/quantum-computing-security-investigations

	Executive Summary
	Introduction
	Quantum Computing Overview
	Quantum Bits, Gates, Circuits and Computers
	Quantum Computer Providers
	Open-Source Quantum Software Development Kits (SDKs)
	Quantum Programming Workflow
	Quantum Computers Today

	Threat Models
	Classical Attacks on Quantum Computing Software Stack
	Classical Attacks on Quantum Processing Units (QPUs)
	Quantum Attacks on Classical Computers
	Quantum Algorithms and Security on Internet
	Post-Quantum Cryptography
	The Transition to PQC

	Quantum Attacks on QPUs

	Attack Vectors
	Classical Attacks on Quantum Computing Software Stack
	Supply Chain Attacks
	Compromised Quantum User's Computer
	Untrusted Transpilers
	Plain-Text Authentication Tokens
	Man-in-the-Middle (MitM)
	DNS / IP Spoofing
	Man-in-the-Browser (MitB)
	Denial of Service (DoS)
	Untrusted Quantum Providers
	Untrusted Quantum Users

	Classical Attacks on QPUs
	Attacking QPU Calibration Using the Pulse API
	Side-Channel Attacks
	Scheduler Attacks

	Quantum Attacks on Classical Computers
	Quantum Algorithms

	Quantum Attacks on QPUs
	The |11..1 State Initialization Attack
	Accessing Higher Energy States Attacks
	Readout Attacks in Multi-tenant Environments
	Readout Attacks in Single-tenant Environments
	Cross-Talk Attacks
	Shuttle Exploiting in Trapped-Ions Quantum Computers

	Research, Analysis and Experiments
	Classical Attacks on Quantum Computing Software Stack
	Attacking the API Authentication Tokens
	Quantum Circuit Hidden Alteration

	Classical Attacks on QPUs
	Attacking QPU Calibration Using the Pulse API

	Quantum Attacks on Classical Computers
	Quantum Attacks on QPUs
	Experiments on Qubit Reset Attacks
	Fault Injection Attacks
	Exploring the Potential for Cross-Talk Attacks

	Reflections on Quantum Computer Related Security
	Importance of Our Investigation
	Attacks and Defenses
	Classical Attacks on Quantum Computing Software Stack
	Classical Attacks on QPUs
	Quantum Attacks on Classical Computers
	Quantum Attacks on QPUs

	Conclusions
	Appendices

