
Windows Downdate:
Downgrade Attacks
Using Windows Updates

Alon Leviev

Security Researcher @ SafeBreach

22-years-old

Self-taught

OS internals, reverse engineering and
vulnerability research

Former BJJ world and european champion

Creator of PoolParty process injection techniques

Agenda

Research Background

Downgrade Attacks Using Windows Updates

Virtualization-Based Security Vulnerabilities

Windows Update Restoration Vulnerability

Closing Remarks

Research
Background

W I N D O W S D O W N D AT E

What are Downgrade Attacks?

Immune
Software

Vulnerable
Software

Downgrade immune
software to vulnerable

software

Attacker

Downgrade Attacks In-The-Wild –
BlackLotus UEFI Bootkit

The BlackLotus UEFI bootkit employed a downgrade
attack to bypass Secure Boot

The Secure Boot bypass worked on fully updated
Windows 11 machines

Caused a massive panic in the cyber
security industry

Secure Boot In a Nutshell

UEFI
Firmware

UEFI Boot
Manager

Windows
Boot Manager

Windows
Boot Loader

Windows Kernel

Verify

Each component in the
boot chain must be
digitally signed

Verify

Verify

Verify

BlackLotus Secure Boot Bypass

BlackLotus downgraded the Windows
Boot Manager to signed but vulnerable
version of it

UEFI
Firmware

UEFI Boot
Manager

Windows
Boot Manager

Windows
Boot Loader

Windows Kernel

Verify

Verify

Verify

Verify

Revocation List

…

…

…

Microsoft’s Mitigation Against
Secure Boot Downgrades

Microsoft’s mitigation included
adding signed but vulnerable boot managers to
revocation lists

Revoked boot managers are not allowed

UEFI
Firmware

UEFI Boot
Manager

Windows
Boot Manager

Windows
Boot Loader

Windows Kernel

Verify

Verify

Verify

Verify

Research Motivation

Are there any components affected
by downgrade attacks other then
Secure Boot?

Research Goals

Evaluate the state of
downgrade attacks on Windows

Find if any other critical
components have been overlooked

Downgrade Vision

Bring Your Own
Vulnerable Windows!

What makes a downgrade attack complete?

Fully Undetectable The downgrade is performed in a legitimate way

Invisible The downgraded components appear up to date

Persistent Future updates do not overwrite the downgraded
components

Irreversible Scanning and repairing tools are unable to detect
and repair corruptions

Finding the suitable component

Which component is the
least expected to perform
downgrades?

Finding the suitable component

Windows Updates!

W I N D O W S D O W N D AT E

Downgrade Attacks
Using Windows

Updates

Windows Updates Architecture

Update Files

Update Server
Process

Update Client
Process

Administrator
Enforcement

Communication Over COM

Ntoskrnl.exe Ntdll.dll

… …

Trusted Installer
Enforcement

Trusted Installer enforcement –
Is It Useful?

Multiple working public PoC’s of Administrator to Trusted Installer
elevation

It is considered malicious and EDRs detect such elevations

Even if I bypass detection, self-implementing the downgrade may
seem malicious

Taking over the Windows Update process solves
all of that

Update Flow

Update
Folder

Update Server
Process

Update Client
Process

1. Client asks the server to perform an
update given an update folder

Update Flow

2. Server validates the integrity
of the client supplied update folder

Update
Folder

Update Server
Process

Update Client
Process

Update Flow

3. Server operates on the update folder
to finalize the update files

Update Files

Update
Folder

Update Server
Process

Update Client
Process

Update Flow

4. Server saves the update action list to
%WinDir%\WinSxS\Pending.xml

Update Files

Update
Folder

Update Server
Process

Update Client
Process

Update Flow

5. In the next reboot, Pending.xml
is operated on, and the update actions
are performed

Update Files

Update
Folder

Update Server
Process

Update Client
Process

What Is Client Controlled?

Client
ControlledTrusted Installer Enforced

Trusted Installer Enforced

Update Files

Update
Folder

Update Server
Process

Update Client
Process

Update Folder Contents

Update Component

Update
Folder

Update folder contains
update components

Update Folder Contents – MUM

Update Component

Update
Folder

MUM files contain
component metadata,
component
dependencies,
installation order etc.

Update Folder Contents – Manifest

Update
Folder

Manifest files contain
installation specific data
such as file paths,
registry keys, and
installers to execute

Update Component

Update Folder Contents – Differential

Differential files
are deltas from the base
files

Base + Differential = Full
Update File

Update
Folder

Update Component

Update Folder Contents – Catalog

Catalog files are
the digital signatures of
MUM and Manifest
files

Update
Folder

Update Component

Update Folder Contents – Recap

Only Catalogs are explicitly digitally signed

Manifests and MUMs are not explicitly digitally signed, but
are signed in Catalogs

Differentials are not digitally signed

Differentials control the actual final update file content

Targeting Differential Files

Any chance that differential files
were left behind in
terms of verification?

Targeting Differential Files – Impossible

Sha256
(Full Update File)

Expected full update files
hashes are hardcoded in the
manifests

Targeting The Action List

The action list is Trusted Installer enforced.
Since operated on during reboots, the
system must save its state somewhere.

Targeting The Action List – Possible!

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\SideBySide\Configuration\PoqexecCmdline

PoqExec.exe Pending.xml [more args]

Action List path is saved in the registry and is
not Trusted Installer enforced!

What Can We Do With The Action List?

<POQ postAction="reboot">

<CreateFile path="C:\Windows\System32\Create.exe" fileAttributes="0x00000000"/>

<MoveFile source="C:\UpdateDir\Source.exe“ destination="C:\Windows\System32\Destination.exe"/>

<HardlinkFile source="C:\UpdateDir\Source.exe“ destination="C:\Windows\System32\Destination.exe"/>

<SetFileInformation path="C:\UpdateDir\Source.exe“ securityDescriptor="binary base64:[BASE64-BLOB]" flags="0x00000040"/>

<DeleteFile path="C:\Windows\System32\Delete.exe"/>

<CreateDirectory path="C:\Windows\System32\Directory" fileAttribute="0x00000080“ securityDescriptor="binary base64:[BASE64-BLOB]"/>

<CreateKey path="\Registry\Machine\Key"/>

<SetKeyValue path="\Registry\Machine\Key" name="Name" type="0x00000001“ encoding="base64" value="[BASE64-BLOB]"/>

<SetKeySecurity path="\Registry\Machine\Key“ securityDescriptor="binary base64:[BASE64-BLOB]" flags="0x00000001"/>

<DeleteKeyValue path="\Registry\Machine\Key" name="Value"/>

<DeleteKey flags="0x00000001" path="\Regsitry\Machine\Key"/>

</POQ>

How To Downgrade Files?

The HardlinkFile action can be used to downgrade system files

<HardlinkFile source="C:\UpdateDir\Source.exe“ destination="C:\Windows\System32\Destination.exe"/>

Initiating Update

Trusted
Installer Service

1. Set Trusted Installer service as Auto-Start

2. Add Pending.xml path in registry

HKLM\COMPONENTS\PendingXmlIdentifier

HKLM\.....\PoqexecCmdline

3. Add Pending.xml identifier in registry

Downgrade Attack via Windows Update Achieved!

Ability to “update” the system with a downgrading
Pending.xml

All integrity verification checks are bypassed

No Trusted Installer elevation is required

Complete Windows Update takeover!

Complete Downgrade Attack – Fully Undetectable

The downgrade is fully undetectable, it is
performed
in the most legitimate way

Complete Downgrade Attack – Invisible

The system will appear up to date, as we
“updated” the system

Complete Downgrade Attack – Persistent

Not installing
updates

The action list parser PoqExec.exe is not digitally signed, and can
be patched to install empty updates

PoqExec.exe

…

Complete Downgrade Attack – Irreversible

Not detecting or repairing
corruptions

SFC.exe

The System Integrity Check and Repair utility SFC.exe is not
digitally signed, and can be patched to never detect or repair
corruptions

Demo #1

Admin to Kernel – Security Boundary?

Administrator Kernel

Not a security
boundary

Admin to Kernel – Not a Boundary, But Still a Threat

Lots of users are still running
as Administrator

Microsoft’s Solution –
Deprivileging the Kernel

Microsoft decided to deprivilege
the kernel to make kernel access
less valuable

W I N D O W S D O W N D AT E

Virtualization-
Based Security

What Is VBS?

Secure and isolated virtual environment
powered by the Hyper-V hypervisor

Why VBS was created?

Kernel is assumed compromised

Need a secure place for security features and
key storage

VBS Security Features

Credential Guard

Hypervisor-Protected Code Integrity (aka. HVCI)

System Guard Secure Launch

Shielded VMs

And more!

Windows Architecture – Before VBS

User Mode
(Ring 3)

Kernel Mode
(Ring 0)

Hypervisor
(Ring -1) Hypervisor

Kernel

Process A Process B

Windows Architecture – After VBS

User Mode
(Ring 3)

Kernel Mode
(Ring 0)

Hypervisor
(Ring -1)

Normal Mode
(VTL0)

Secure Mode
(VTL1)

Secure Kernel

Hypervisor

Kernel

Process A Process B
Secure

Process A
Secure

Process B

VBS Remote Disablement Protection
via UEFI Locks

Boot service UEFI variable is

used as configuration source instead of

Windows Registry

Winload.efi
NV|BS UEFI Variable

VbsPolicy
Registry Key

VbsPolicy

Ignored Used

VBS Remote Disablement
Protection via UEFI Locks

SecConfig.efi
Ask user to physically
approve disablement

NV|BS UEFI Variable
VbsPolicy

Clear lock

Disabling UEFI lock protected feature requires loading a dedicated EFI
application that requires physical approval to clear the UEFI lock

VBS Remote Disablement
Protection via UEFI Locks

What will happen if we invalidate VBS files?
How will VBS react?

Hvix64.exeSecureKernel.exe

VBS Remote Disablement Protection
via UEFI Locks

Winload.efi

SecureKernel.exe

Validate
SecureKernel.exe

Validation fails Boot normally

Windows boots normally, abandoning VBS
Even when enforced with UEFI locks!

Demo #2 –
Chaining It All Together

What are we
going to see?

Credential extraction
against the most
restrictive settings

Settings

PPL enabled for LSASS
with UEFI lock

Credential Guard
enabled with
UEFI lock

Windows Defender up
and running

How will it happen?

PPL bypass by reverting
the PPLFault patch

Credential Guard
disablement bypassing
UEFI lock

Turning Windows
Defender unfunctional

Demo #2 –
What If only Credential Guard Is Bypassed?

LSASS can not be dumped

Demo #2 –
What If only PPL Is Bypassed?

Credentials are encrypted

Demo #2

VBS Security Boundaries

Attacker
starting

point

User Mode
(Ring 3)

Kernel Mode
(Ring 0)

Hypervisor
(Ring -1)

Normal Mode
(VTL0)

Secure Mode
(VTL1)

Secure Kernel

Hypervisor

Kernel

Process A Process B
Secure

Process A
Secure

Process B

Security Boundaries:

VTL0 → VTL1

RING3/0 → RING -1

VBS Downgrades Goals

Understand if downgrade mitigation exists in the
virtualization stack components

Aim to downgrade to vulnerable code

Major downgrade without vulnerable code is still a
vulnerability

VBS Target – Isolated User Mode

Attacker
starting

point

User Mode
(Ring 3)

Kernel Mode
(Ring 0)

Hypervisor
(Ring -1)

Normal Mode
(VTL0)

Secure Mode
(VTL1)

Secure Kernel

Hypervisor

Kernel

Process A Process B
Secure

Process A
Secure

Process B

Targeting Credential Guard
Isolated User Mode Process

Implemented in Ring3-VTL1 as an Isolated User
Mode process LsaIso.exe

LsaIso.exe contains secrets instead of the original
Lsass.exe

Lsass.exe proxy authentication through LsaIso.exe

Bringing CVE-2022-34709 Back To Life – Credential
Guard Elevation of Privilege

KerbClientShared.dllKerbClientShared.dll
Windows
Update

Vulnerable module is KerbClientShared.dll (10.0.22000.856)

Downgrading KernClientShared.dll to its vulnerable version worked!

Crossed security boundary is Ring3-VTL0 to Ring3-VTL1

VBS Target – Secure Kernel

Attacker
starting

point

User Mode
(Ring 3)

Kernel Mode
(Ring 0)

Hypervisor
(Ring -1)

Normal Mode
(VTL0)

Secure Mode
(VTL1)

Secure Kernel

Hypervisor

Kernel

Process A Process B
Secure

Process A
Secure

Process B

Secure Kernel

SecureKernel.exe serves as the kernel for
Secure Mode (VTL1)

Implements security features such as HVCI,
HyperGuard and more.

Bringing CVE-2021-27090 Back To Life – Secure
Kernel Elevation of Privilege

SecureKernel.exeSecureKernel.exe
Windows
Update

Vulnerable module is SecureKernel.exe (10.0.19041.207)

Downgrading SecureKernel.exe with some of its dependencies
such as SKCI.dll and CI.dll worked!

Crossed security boundary is Ring3-VTL0 to Ring0-VTL1

VBS Target – Hyper-V’s Hypervisor

Attacker
starting

point

User Mode
(Ring 3)

Kernel Mode
(Ring 0)

Hypervisor
(Ring -1)

Normal Mode
(VTL0)

Secure Mode
(VTL1)

Secure Kernel

Hypervisor

Kernel

Process A Process B
Secure

Process A
Secure

Process B

Hyper-V Hypervisor

The Hyper-V hypervisor is
Hvix64.exe (Intel) or Hvax64.exe (AMD)

The hypervisor is a standalone micro-kernel – valuable
target for downgrade

Downgrading the Hyper-V Hypervisor
to a two-year-old hypervisor

Hvix64.exeHvix64.exe
Windows
Update

Many Hyper-V Elevation of Privileges have been found in the last two years

Microsoft does not share the vulnerable component in the Hyper-V stack

I decided to go two years backward (10.0.22000.282) to prove the vulnerability

Downgrading the hypervisor with its loader HvLoader.dll worked!

Crossed security boundary is Ring3-VTL0 to Ring -1

Demo #3

Downgrade Attacks Implications

Attacker
starting

point

User Mode
(Ring 3)

Kernel Mode
(Ring 0)

Hypervisor
(Ring -1)

Normal Mode
(VTL0)

Secure Mode
(VTL1)

Process A Process B

Secure Kernel

Secure
Process A

Secure
Process B

Hypervisor

Kernel

W I N D O W S D O W N D AT E

Windows Update
Restoration
Vulnerability

It All Started With Windows.old
Windows Quality Updates saves the old operating system in
C:\Windows.old for restoration purposes

old Windows OSC:\Windows.old

Can Windows.old contents
be tampered with?

Can not access old files

old Windows OSC:\Windows.oldUnprivileged Attacker

Access lists are copied from the old OS

It is impossible to temper with files that could not be previously
tampered with

Can Windows.old be
tampered with?
Unprivileged users have full access
to C:\Windows.old itself!

Full access

old Windows OSC:\Windows.oldUnprivileged Attacker

Exploitation Strategy

old Windows OSC:\Old-Windows.oldUnprivileged Attacker

Attacker can rename C:\Windows.old and re-create
an attacker-controlled Windows.old

As a result, the attacker-controlled OS is used in case of update restoration!

Attacker Windows OSC:\Windows.old

1. Rename
Windows.old

2. Create attacker
controlled
Windows.old

W I N D O W S D O W N D AT E

Closing Remarks

Responsible Disclosure and CVE

We responsibly disclosed all the research findings to
Microsoft in February 2024

Microsoft issued CVE-2024-21302

Microsoft’s Official Response

We appreciate the work of SafeBreach in identifying and
responsibly reporting this vulnerability through a
coordinated vulnerability disclosure. We are actively
developing mitigations to protect against these risks while
following an extensive process involving a thorough
investigation, update development across all affected
versions, and compatibility testing, to ensure maximized
customer protection with minimized operational disruption.

Next Steps

Are there additional Windows features
vulnerable to downgrade attacks?

Linux Virtualization-Based Security (LVBS) was
introduced, does the same design issues exist in the
Linux implementation?

Are other operating systems such as Linux or MacOS
vulnerable to downgrade attacks?

Takeaways

Awareness and mitigations
against OS downgrade
attacks

Takeaways

Design must be regarded as
a relevant attack surface

Takeaways

Thoroughly examine and
expand in-the-wild attacks

Credits

James Forshaw
@tiraniddo

CVE-2022-34709

Saar Amar
@AmarSaar

CVE-2021-27090

Gabriel Landau
@GabrielLandau

PPLFault

Valentina Palmiotti
@chompie1337

Ruben Boonen
@FuzzySec

CVE-2023-21768 Exploit

Benjamin Delphi
@gentilkiwi

Mimikatz

Thank You!

@_0xDeku

linkedin.com/in/alonleviev

alon.leviev@safebreach.com

	Slide 1: Windows Downdate: Downgrade Attacks Using Windows Updates
	Slide 2: Alon Leviev
	Slide 3: Agenda
	Slide 4: Research Background
	Slide 5: What are Downgrade Attacks?
	Slide 6: Downgrade Attacks In-The-Wild – BlackLotus UEFI Bootkit
	Slide 7: Secure Boot In a Nutshell
	Slide 8: BlackLotus Secure Boot Bypass
	Slide 9: Microsoft’s Mitigation Against Secure Boot Downgrades
	Slide 10: Research Motivation
	Slide 11: Research Goals
	Slide 12: Downgrade Vision
	Slide 13: What makes a downgrade attack complete?
	Slide 14: Finding the suitable component
	Slide 15: Finding the suitable component
	Slide 16: Downgrade Attacks Using Windows Updates
	Slide 17: Windows Updates Architecture
	Slide 18: Trusted Installer enforcement – Is It Useful?
	Slide 19: Update Flow
	Slide 20: Update Flow
	Slide 21: Update Flow
	Slide 22: Update Flow
	Slide 23: Update Flow
	Slide 24: What Is Client Controlled?
	Slide 25: Update Folder Contents
	Slide 26: Update Folder Contents – MUM
	Slide 27: Update Folder Contents – Manifest
	Slide 28: Update Folder Contents – Differential
	Slide 29: Update Folder Contents – Catalog
	Slide 30: Update Folder Contents – Recap
	Slide 31: Targeting Differential Files
	Slide 32: Targeting Differential Files – Impossible
	Slide 33: Targeting The Action List
	Slide 34: Targeting The Action List – Possible!
	Slide 35: What Can We Do With The Action List?
	Slide 36: How To Downgrade Files?
	Slide 37: Initiating Update
	Slide 38: Downgrade Attack via Windows Update Achieved!
	Slide 39: Complete Downgrade Attack – Fully Undetectable
	Slide 40: Complete Downgrade Attack – Invisible
	Slide 41: Complete Downgrade Attack – Persistent
	Slide 42: Complete Downgrade Attack – Irreversible
	Slide 43
	Slide 44: Admin to Kernel – Security Boundary?
	Slide 45: Admin to Kernel – Not a Boundary, But Still a Threat
	Slide 46: Microsoft’s Solution – Deprivileging the Kernel
	Slide 47: Virtualization-Based Security
	Slide 48: What Is VBS?
	Slide 49: Why VBS was created?
	Slide 50: VBS Security Features
	Slide 51: Windows Architecture – Before VBS
	Slide 52: Windows Architecture – After VBS
	Slide 53: VBS Remote Disablement Protection via UEFI Locks
	Slide 54: VBS Remote Disablement Protection via UEFI Locks
	Slide 55: VBS Remote Disablement Protection via UEFI Locks
	Slide 56: VBS Remote Disablement Protection via UEFI Locks
	Slide 57: Demo #2 – Chaining It All Together
	Slide 58: Demo #2 – What If only Credential Guard Is Bypassed?
	Slide 59: Demo #2 – What If only PPL Is Bypassed?
	Slide 60
	Slide 61: VBS Security Boundaries
	Slide 62: VBS Downgrades Goals
	Slide 63: VBS Target – Isolated User Mode
	Slide 64: Targeting Credential Guard Isolated User Mode Process
	Slide 65: Bringing CVE-2022-34709 Back To Life – Credential Guard Elevation of Privilege
	Slide 66: VBS Target – Secure Kernel
	Slide 67: Secure Kernel
	Slide 68: Bringing CVE-2021-27090 Back To Life – Secure Kernel Elevation of Privilege
	Slide 69: VBS Target – Hyper-V’s Hypervisor
	Slide 70: Hyper-V Hypervisor
	Slide 71: Downgrading the Hyper-V Hypervisor to a two-year-old hypervisor
	Slide 72: Demo #3
	Slide 73: Downgrade Attacks Implications
	Slide 74: Windows Update Restoration Vulnerability
	Slide 75: It All Started With Windows.old
	Slide 76: Can Windows.old contents be tampered with?
	Slide 77: Can Windows.old be tampered with?
	Slide 78: Exploitation Strategy
	Slide 79: Closing Remarks
	Slide 80: Responsible Disclosure and CVE
	Slide 81: Microsoft’s Official Response
	Slide 82: Next Steps
	Slide 83: Takeaways
	Slide 84: Takeaways
	Slide 85: Takeaways
	Slide 86: Credits
	Slide 87: Thank You!

