
#BHUSA @BlackHatEvents

You‘ve Already Been Hacked

What if There Is a Backdoor in Your UEFI OROM?

Kazuki Matsuo (@InfPCTechStack)

2024/8/8 South Seas CD, Level 3

https://x.com/infpctechstack

#BHUSA @BlackHatEvents

Whoami - Kazuki Matsuo （@InfPCTechStack）

Title：

Security Researcher

Affiliation：

FFRI Security, Inc & Waseda University
（This study was done during my master’s degree）

Interests：

UEFI （Negative Rings）

Trusted Computing

Windows Kernel

https://x.com/infpctechstack

#BHUSA @BlackHatEvents

Contributors

Yuki Mogi

• Security Researcher @ FFRI Security, Inc

• Recently interested in security observability

• Active in MWS, an academic cybersecurity

community in Japan.

Koh M. Nakagawa (@tsunek0h)

• Security Researcher @ FFRI Security, Inc

• Vulnerability Research on macOS/iOS

• Black Hat EU 2020/Asia 2023, CODE

BLUE (2021, 2023)

Tatsuya Mori (@valdzone)

• Professor @ Waseda University

• Autonomous vehicle security

• https://seclab.jp

https://seclab.jp/

#BHUSA @BlackHatEvents

UEFI BIOS

• BIOS： System firmware that initializes hardware and
boots the OS.

• UEFI： Standard for BIOS and defines the boot phases
shown in the right figure.

• DXE： The phase where most devices are abstracted by
multiple DXE modules/drivers.

• UEFI Protocol： Interface for accessing the device
produced in the DXE phase.
(e.g. HttpProtocol, SimpleFileSystemProtocol…)

• Runtime DXE modules： Some DXE modules persist in
memory during runtime.
(Most DXE modules are unloaded before OS boot)

#BHUSA @BlackHatEvents

OROM
（aka Option ROM, PCI Expansion ROM, XROM）

• Contains DXE drivers that initialize the device.

• Present both in external and internal devices

• Often present in network cards, storage
devices, graphic cards, and adapters.

• DXE drivers in OROM get loaded at PCI
enumeration phase (pretty early in DXE).

• Legacy BIOS OROM and UEFI OROM is
different. This talk is about UEFI OROM.

OROM↓

← OROM

#BHUSA @BlackHatEvents

This Talk is about …

• Investigating what can backdoors stored in OROM do

• Clarifying the merits of storing backdoor inside OROM

• Implementing 3 PoC OROM backdoor based on the above merits

• Considering how to defend against these backdoors

#BHUSA @BlackHatEvents

Why infect OROM ?

Merit 1: Stealthier place to put malware

• HDD/SSD: Easy to detect

• SPI Flash (BIOS): Some EDRs are beginning to look here

• OROM: No versatile ways to read OROM from software

Merit 2: Directly infect privileged layer (ring 0)

• Can infect UEFI directly without touching userland or kernel

=> OROM malware can be stealthy and powerful backdoor

Userland

Kernel

UEFI

#BHUSA @BlackHatEvents

Infection Scenarios for OROM malware

• Device infected with OROM malware gets integrated into SoCs
in the supply chain

• A third-party attacker writes malware to the device's OROM and
sells it through online marketplaces

• Usermode malware writes malware to the OROM
(Merit2 will be lost though…)

• Evil-Maid attacks

#BHUSA @BlackHatEvents

Existing UEFI OROM research

• Infect OROM on Apple Thunderbolt ethernet adapter for persistence [Loukas, 2012]

• Infect OROM for lateral movement of MacBook firmware worm [Trammell, 2015]

• Immediately infect back to SPI flash after booting with tampered OROM

• Acquire UEFI OROM images by memory forensics [Johannes, 2015]

• Change boot media by OROM on Thunderbolt-to-Ethernet adapter [Vault7, 2012]

 Few research on OROM. No research focusing only on OROM.

 The merit of directly infecting UEFI with more practical infection scenario
(than just evil-maid) is not focused.

https://media.blackhat.com/bh-us-12/Briefings/Loukas_K/BH_US_12_LoukasK_De_Mysteriis_Dom_Jobsivs_Slides.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Hudson-Thunderstrike-2-Sith-Strike.pdf
https://www.sciencedirect.com/science/article/pii/S1742287615000110
https://wikileaks.org/vault7/document/SonicScrewdriver_1p0/SonicScrewdriver_1p0.pdf

#BHUSA @BlackHatEvents

Infect up to which Layer ?

UEFI
• Able： rw files / simple network communication
• Unable： time-consuming tasks / persistent network communication

UEFI + Kernel
• Able： persistent network communication
• Unable： use advanced functions such as shells

UEFI + Kernel + Userland
• Able: anything
• ＊Existing UEFI malwares are all this.

Strong

Weak

Stealthiness

#BHUSA @BlackHatEvents

UEFI only Backdoor

• The most important thing for a backdoor is to be able to communicate over the network
→ use HttpProtocol

• For the data to send, we can read file from the disk.
→ use SimpleFileSystemProtocol & FileProtocol

 UEFI protocol is the key for implementing UEFI only backdoor

But be careful that,
• Protocols are unloaded when OS boots up (cannot achieve persistent connection)
• Time-consuming tasks make the boot time long which is suspicious

＊ Also, not a backdoor, but there is PoC ransomware using only UEFI [Alex, 2017].

https://www.blackhat.com/docs/asia-17/materials/asia-17-Matrosov-The-UEFI-Firmware-Rootkits-Myths-And-Reality.pdf#page=55

#BHUSA @BlackHatEvents

HttpProtocol

Fig 2. Definition of HttpProtocol

Fig 1. Example usage

#BHUSA @BlackHatEvents

Enabling HttpProtocol

• HttpProtocol is mainly used for HTTP boot and is disabled by default.
• Can be enabled from BIOS setup screen.
• This configuration is often stored in UEFI variable “NetworkStackVar”
• Modify this variable to enable

#BHUSA @BlackHatEvents

SimpleFileSystemProtocol & FileProtocol

• UEFI usually supports only FAT, while windows uses NTFS
• Some BIOS contain AMI NTFS DXE driver which is read-only
• We can put vector-edk’s NtfsDxe into the OROM image to install the protocol for NTFS

https://github.com/hackedteam/vector-edk/tree/master/NtfsPkg/NtfsDxe

#BHUSA @BlackHatEvents

Demo

#BHUSA @BlackHatEvents

Example scenarios for UEFI only Malware

• Stealing files (demo)
• SimpleFileSystemProtocol/FileProtocol to read files, HttpProtocol to send them

• Stealing application data
1. Runtime DXE module searches through virtual memory for important data
2. The module stores the data into non-volatile storages such as UEFI variables
3. Next time the PC boot, the module reads the data and send it via HttpProtocol

• Receving C2 commands
• When the victim PC boots, the DXE module receives commands from C2 server via

HttpProtocol and performs simple tasks (e.g. encrypting files).
• Note that, we cannot perform lengthy tasks and the commands can be received only

during the boot phase (which is very short)

#BHUSA @BlackHatEvents

UEFI+Kernel Backdoor

• If you want persistent connection during runtime, you want to at least use the kernel
• You can access network cards from PCIe tree using only UEFI modules,

but that will make the backdoor very hardware specific.

• Runtime DXE driver can use kernel exports by
1. Find ntoskrnl.exe base address
2. Parse PE headers and resolve the address of exports

• Network communication in kernel level
• WSK (WinSock Kernel)
• TDI (Transport Device Interface)

＊ They both are just IOCTLs to the Afd.sys

#BHUSA @BlackHatEvents

Execution of kernel level code
• Common ways to execute kernel level code

• Install kernel driver
• Easy to detect (DSE, listing DriverObject, …)

• Kernel shellcode
• Existing malwares often hook Windows initialization process to allocate and

execute kernel shellcode
• Require multiple hooks based on pattern matching which is unstable

• Directly use kernel exports from runtime DXE driver
• Merit 1: Widely known monitoring tools or debuggers don’t recognize

runtime DXE Driver (unlike kernel drivers) on Windows
• Merit 2: No need to allocate memory for placing shellcode through the

kernel's I/O manager (which is stealthy).
• Demerit 1: Cannot use some kernel exports due to the lack of DriverObject

#BHUSA @BlackHatEvents

Hooking Afd.sys

• Most socket communications on Windows are IOCTLs to Afd.sys
• We can hook the Major Function of ¥Driver¥Afd to intercept/modify/add communication

#BHUSA @BlackHatEvents

Hooking Afd.sys

↓Look for Magic Bytes, if found →

Add extra data
to send back

#BHUSA @BlackHatEvents

When to hook Afd.sys

• How to trigger runtime DXE driver code during runtime?

• GetVariable runtime service is often called even during runtime

• We can hook GetVariable to obtain periodic code execution

• We can hook Afd.sys in the GetVariableHook

#BHUSA @BlackHatEvents

Demo

#BHUSA @BlackHatEvents

Full-Kernel Malware
• Full-Kernel Malware： Malicious behavior only in the kernel layer (without userland)

• e.g. Srizbi, Mebroot, Rustock [Kimmo, 2010]
• Existed about 15 years ago, but it’s not popular at all recently

Why? Probably because,
• Improvement of kernel security

• Driver Signature Enforcement, PatchGuard, HVCI (Memory Integrity)
• Installation of kernel driver requires userland installer anyway

• Easier to implement malicious task on userland and hide that from driver

 Full-Kernel Malware ≒ UEFI+Kernel Malware,
with less impact of kernel security above,
with no userland installer required

http://www.cse.hut.fi/fi/opinnot/T-110.6220/2010_Spring_Malware_Analysis_and_Antivirus_Tchnologies/luennot-files/T-110.6220_Kernel.pdf

#BHUSA @BlackHatEvents

UEFI+Kernel+Userland Backdoor

• If you want to do more complicated things like accessing the shell,
you need to use userland code

• All existing UEFI malware execute the main malicious tasks on userland
• Writing malicious EXE to disk by NtfsDxe or DLL injection is often used

• Using runtime DXE module allows for more stealthy techniques than
existing UEFI malware.

#BHUSA @BlackHatEvents

Advantages of Runtime DXE Driver

• Resides in memory during both the boot phase and the runtime phase

• We can take advantage of this and do things like below:
1. Allocate buffer during the boot phase
2. OS boots and enter runtime phase
3. Writes shellcode to the buffer
4. Modify page table to make the buffer accessible from userland
5. Start a userland thread to execute the shellcode

We can make detection more difficult by transferring part of the malicious
tasks to the boot phase

#BHUSA @BlackHatEvents

What process to use?
• Exisiting UEFI malwares often use winlogon.exe or svchost.exe
• To make it stealthier, we can instead use PPL
• EDR cannot inject detection code into PPL of which signers are Windows or WinTcb

#BHUSA @BlackHatEvents

Userland Shellcode Execution Flow

Kernel+UEFI

Userland

WinTcb-Light Process

Buffer
① Allocate Buffer
during boot phase

Kernel+UEFI

Userland

EDR Process

Buffer

#BHUSA @BlackHatEvents

Userland Shellcode Execution Flow

Kernel+UEFI

Userland

WinTcb-Light Process

Shellcode

② Write userland
shellcode after

OS boot.

Kernel+UEFI

Userland

EDR Process

Shellcode

#BHUSA @BlackHatEvents

Userland Shellcode Execution Flow

Kernel+UEFI

Userland

WinTcb-Light Process

Shellcode

③ Modify page table
and make this shellcode
accessible from userland

Kernel+UEFI

Userland

EDR Process

Shellcode

#BHUSA @BlackHatEvents

Userland Shellcode Execution Flow

Kernel+UEFI

Userland

WinTcb-Light Process

Shellcode

Kernel+UEFI

Userland

EDR Process

ShellcodeCannot detect
due to high PPL

④ RtlCreateUserThread

⑤ Execute!

#BHUSA @BlackHatEvents

Ring0→Ring3 Buffer

63 M M-1 023412

CR3

PML4E

47 38 30 12 11 02021

Virtual Address

39

PDP Index PD Index PT Index Physical Offset

29

PDPTE

PDE

PTE

Physical

Address

PML4 Table
(Page-Map Level-4)

PDP Table
(Page Directory Pointer)

PD Table
(Page Directory)

Page Table 4KB Page
(Physical Memory)

Reserved
P

W

T

P

C

D
PML4 Base Address

PML4 Index

Set the UserSupervisor bit in each
PML4E/PDPTE/PDE/PTE

#BHUSA @BlackHatEvents

Ring0→Ring3 Buffer

63 M M-1 023412

CR3

PML4E

47 38 30 12 11 02021

Virtual Address

39

PDP Index PD Index PT Index Physical Offset

29

PDPTE

PDE

PTE

Physical

Address

PML4 Table
(Page-Map Level-4)

PDP Table
(Page Directory Pointer)

PD Table
(Page Directory)

Page Table 4KB Page
(Physical Memory)

Reserved
P

W

T

P

C

D
PML4 Base Address

PML4 Index

Set the UserSupervisor bit in each
PML4E/PDPTE/PDE/PTE

• The address in CR3 and other page table entries are physical address

• But, runtime DXE driver is running on virtual address

• It seems MmGetVirtualForPhysical does NOT support addresses related to UEFI

#BHUSA @BlackHatEvents

Partial Identity Mapping

• Create identity page table and set it to CR3 ?
=> No. Currently executing instructions are on the virtual address

• Runtime DXE driver is mapped to the high canonical virtual memory
address and doesn’t use PML4[0]

• On the other hand, identity paging only uses PML4[0]

• We can swap only PML4[0] of the current page table
=> Runtime DXE driver runs normally on virtual address, but

switches to identity map only when trying to access physical address !

#BHUSA @BlackHatEvents

CFG & ACG Bypass

• After writing shellcode to the buffer and setting the UserSupervisor bit, we can
execute it by calling RtlCreateUserThread

• However, CFG (Control Flow Guard) will prevent execution of the shellcode
• Since the shellcode is in high canonical address, CFGbitmap overflows and causes

access violation
=> We can patch ntdll!LdrpDispatchUserCallTarget to jmp without check

• However, making the page writable by ZwProtectVirtualMemory is prevented by ACG
(Arbitrary Code Guard)

=> We can use partial identity table (which is writable) to patch it

#BHUSA @BlackHatEvents

CFG & ACG Bypass

PML4 Table

PDP/PD/PT Table
(Partial Identity Tables)

Physical Page

PML4[0]

mov [address], 0xFF

PDP/PD/PT Table
(Page Tables of PPL)

Physical Page

PML4[N]

if Phy addr

if Virt addr

63 M M-1 01212
R

/

W
Address

U

/

S
Nx

63 M M-1 01212
R

/

W
Address

U

/

S
Nx

Non-Writable

1

0

Writable

#BHUSA @BlackHatEvents

ETW Bypass

• By now, RtlCreateUserThread wouldn’t fail and shellcode should execute
successfully

• However, the fact that the thread starting with high canonical address
(which is suspicious) is still logged by ETW (Event Tracing for Windows)

• Existing UEFI malware doesn’t deal with ETW
(As far as I read the report by security vendors)

• Similarly to CFG bypass, patching nt!EtwWrite & nt!EtwWriteEx to return
immediately can disable ETW

#BHUSA @BlackHatEvents

UEFI+Kernel+Userland Malware Summary

1. Allocate buffer & partial identity table during boot time

2. OS boots and enter runtime phase

3. Execution is transferred to the runtime DXE module via runtime service hook

4. Set the process context to a PPL process (in my PoC, it’s csrss.exe)

5. Modify page table to make shellcode buffer accessible from userland

6. Write shellcode into the buffer

7. Patch ntdll!LdrpDispatchUserCallTarget to bypass CFG

8. Patch nt!EtwWrite & nt!EtwWriteEx to bypass ETW

9. Execute shellcode with RtlCreateUserThread

10. Restore patched functions and execute original runtime service

#BHUSA @BlackHatEvents

Demo

#BHUSA @BlackHatEvents

How to Defend

• Enable secure boot (for OROM) to protect against third-party attacker
without legitimate certificate
• Lookout for secure boot bypass vulnerabilities and fix them

• For supply-chain attack, we need to extract OROM and investigate
whether it contains backdoor or not
• Currently, there are no promising tool to do this

• Look for suspicious network traffic

#BHUSA @BlackHatEvents

Wrap up

• OROM is a stealthy place to put backdoor

• Can directly infect UEFI with wide infection scenario

• Implemented UEFI, UEFI+Kernel, UEFI+KM+UM PoC malware

• Explained method to defend against OROM backdoor

#BHUSA @BlackHatEvents

Disclaimer

This document is a work of authorship performed by FFRI Security, Inc. (hereafter referred to as

"the Company"). As such, all copyrights of this document are owned by the Company and are

protected under Japanese copyright law and international treaties. Unauthorized reproduction,

adaptation, distribution, or public transmission of this document, in whole or in part, without

the prior permission of the Company is prohibited.

While the Company has taken great care to ensure the accuracy, completeness, and utility of

the information contained in this document, it does not guarantee these qualities. The

Company will not be liable for any damages arising from or related to this document.

©FFRI Security, Inc. Author: FFRI Security, Inc.

#BHUSA @BlackHatEvents

Thank you for listening!

Contacts
X DM: https://twitter.com/ffri_research
e-mail: research-feedback@ffri.jp

Repo
https://github.com/FFRI/orom-backdoor-research

https://twitter.com/ffri_research
mailto:research-feedback@ffri.jp
https://github.com/FFRI/orom-backdoor-research

#BHUSA @BlackHatEvents

Appendix

#BHUSA @BlackHatEvents

Environment

• UP2 Pro (single board computer)
• Intel Atom Quad Core 64bit

• Windows 10

• VBS (HVCI) disabled
• Cannot enable because it requires

secure boot to be enabled

• M.2 B+M Key  SATA adapter
• OROM: SPI flash

https://up-shop.org/up-squared-pro-atom-quad-core-0464.html
https://www.amazon.co.jp/gp/product/B0B14V753G/ref=ppx_yo_dt_b_asin_title_o00_s00?ie=UTF8&th=1

#BHUSA @BlackHatEvents

Writing OROM
• Software

• Dependent on the device
(Vendor may provide tools to write)

• Hardware
• Some external devices has SOP/SOIC SPI flash
• Write it directly using such tools like BusPirate

Take it off if power line is shared
with the microcontroller

#BHUSA @BlackHatEvents

Building OROM image

• Tools to build OROM image
• EfiRom utility (EDK2 BaseTools)
• You can also use my tool (orom-builder)

• You can dump ROM and look for
“55 AA” signature to check if that ROM is
OROM or not.

• DXE module can be compressed

• Can contain multiple OROM image
(DXE driver) in a ROM. https://uefi.org/sites/default/files/resources/UEFI_Spec_2

_8_C_Jan_2021.pdf#page=807

https://github.com/MachineHunter/orom-malware-research/tree/master/orom-builder
https://uefi.org/sites/default/files/resources/UEFI_Spec_2_8_C_Jan_2021.pdf#page=807
https://uefi.org/sites/default/files/resources/UEFI_Spec_2_8_C_Jan_2021.pdf#page=807

#BHUSA @BlackHatEvents

Without ETW Bypass

Shell that OROM malware created

ETW logs the
shellcode address

ETW that logs kernel events

#BHUSA @BlackHatEvents

Novelty of this research

• First PoC OROM backdoor for Windows

• First OROM focused infection scenario and backdoor

• HttpProtocol for C2 communication

• Using kernel exports from runtime DXE driver

• Partial Identity Mapping

• Usermode accessible UEFI allocated shellcode

• CFG & ACG bypass

	スライド 1
	スライド 2: Whoami - Kazuki Matsuo （@InfPCTechStack）
	スライド 3: Contributors
	スライド 4: UEFI BIOS
	スライド 5: OROM
	スライド 6: This Talk is about …
	スライド 7: Why infect OROM ?
	スライド 8: Infection Scenarios for OROM malware
	スライド 9: Existing UEFI OROM research
	スライド 10: Infect up to which Layer ?
	スライド 11: UEFI only Backdoor
	スライド 12: HttpProtocol
	スライド 13: Enabling HttpProtocol
	スライド 14: SimpleFileSystemProtocol & FileProtocol
	スライド 15: Demo
	スライド 16: Example scenarios for UEFI only Malware
	スライド 17: UEFI+Kernel Backdoor
	スライド 18: Execution of kernel level code
	スライド 19: Hooking Afd.sys
	スライド 20: Hooking Afd.sys
	スライド 21: When to hook Afd.sys
	スライド 22: Demo
	スライド 23: Full-Kernel Malware
	スライド 24: UEFI+Kernel+Userland Backdoor
	スライド 25: Advantages of Runtime DXE Driver
	スライド 26: What process to use?
	スライド 27: Userland Shellcode Execution Flow
	スライド 28: Userland Shellcode Execution Flow
	スライド 29: Userland Shellcode Execution Flow
	スライド 30: Userland Shellcode Execution Flow
	スライド 31: Ring0→Ring3 Buffer
	スライド 32: Ring0→Ring3 Buffer
	スライド 33: Partial Identity Mapping
	スライド 34: CFG & ACG Bypass
	スライド 35: CFG & ACG Bypass
	スライド 36: ETW Bypass
	スライド 37: UEFI+Kernel+Userland Malware Summary
	スライド 38: Demo
	スライド 39: How to Defend
	スライド 40: Wrap up
	スライド 41: Disclaimer
	スライド 42: Thank you for listening!
	スライド 43: Appendix
	スライド 44: Environment
	スライド 45: Writing OROM
	スライド 46: Building OROM image
	スライド 47: Without ETW Bypass
	スライド 48: Novelty of this research

