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SnailLoad

We can tell which website you visit, without running anything on your system:
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…and which video you're watching, but more about that later



What are Side Channels?
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What are Side Channels?

Obtain meta-data and derive data from it
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Side Channel Example
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A side channel but a pretty useless one



Timing Side Channels
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Where is the attacker? Local? Remote?



Local Timing Attack
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Remote Timing

Remote in “remote adversary”

can mean different things

• attack from a different chip?

• JavaScript?

• network-exposed API?

• local WiFi?
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State of the Art

• local code execution → fingerprint videos

• control local gateway → precisely monitor network traffic

• Tor gateway → estimate network traffic

→ application fingerprinting

→ website fingerprinting

→ video fingerprinting
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Internet Access Technologies

• DSL, Fiber, LTE, 5G: different throughput

• backbone connection has orders of magnitude higher throughput

→ buffering before last mile is necessary!
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Packet Buffering

Figure 1: Connection idle Figure 2: Connection busy

...

Figure 3: Bufferbloat
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Network Activity Causes Latency Spikes
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Figure 5: Different machine sharing the same internet connection pinging 8.8.8.8
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50 ms ping interval



Google start page is simpler than Amazon's, so the spike is more subtle  Shape of the spike(s) possibly enable classification
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Measuring ping times from a different computer on the same connection yields same results  Effect is caused by the internet connection



Idle and Busy Round-Trip-Times
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If we have a download from a fast server – how much does the latency increase?
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Depends on the internet connection – on some it increases quite a lot…
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…on some the effect is more subtle, but still easily observable
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…on some the effect is more subtle, but still easily observable



Visiting a website or buffering a video basically triggers short downloads (of HTML, JavaScript, CSS, Images, in case of websites, video segments in case of videos) – also: modern websites are quite large



Attack Setups

YouTube
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• Various scenarios: Compromised websites, malicious ads, emails, and more

• Different ways attackers can exploit network traffic to perform attacks
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Remember: The victim's internet connection forms a bottleneck – activity on the connection is observable as increased round-trip times
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Benign-looking server offers a download, infers round-trip times from TCP Acknowledgments
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Polling the Server’s Send Buffer To Measure RTTs

begin

acked ← false;

start ← get current time();

send(sock, b, 1, 0);

repeat

if ioctl(sock, SIOCOUTQ) = 0 then

acked ← true;

end

until acked;

end ← get current time();

return end − start;

end
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Attackers can measure round-trip times on their server from TCP-ACKs. This does not even require extra privileges (think of a cheap webhoster where you might not have root access).
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We have not yet sent the packet, so set acked to false. We're interested in the time the code takes, so get the start time.
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Now send a small fraction of the data requested by the victim. Here, we send each byte in a separate TCP packet, but we could also do more. send returns immediately after storing the data in the send buffer of the socket.
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Now wait until the enqueued data is removed from the send buffer and the buffer is empty again. This happens, as soon as the server receives a TCP ACK for the data.



Polling the Server’s Send Buffer To Measure RTTs
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After that, just obtain the end time and return the difference. Repeat this in fixed time slices for every part of the transferred file to obtain a nice trace over time.









Fingerprinting with Machine Learning

• use machine learning to analyze

network traffic and infer user actions

• pre-process traces with an STFT

• KERAS (Tensorflow)

• closed-world vs. open-world

Table 1: CNN Parameters

Type Parameters Activation

Conv2D filters=32, ker-

nel size=[5,5],

strides=[1,1]

ReLU

MaxPooling2D pool size=[2,2],

strides=[2,2]

-

Conv2D filters=64, ker-

nel size=[3,3],

strides=[1,1]

ReLU

MaxPooling2D pool size=[2,2],

strides=[2,2]

-

Conv2D filters=128, ker-

nel size=[3,3],

strides=[1,1]

ReLU

MaxPooling2D pool size=[2,2],

strides=[2,2]

-

Flatten - -

Dense output size=1024 ReLU

Dense output size=512 ReLU

Dense output size=10 Softmax
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Video Fingerprinting
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How large does the website have to be?
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Video Fingerprinting on 10 different connections
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Evaluated on 10 internet connections, F1 scores ranging from 37 % on a 150 Mbit/s FTTB connection (2nd line, 2nd column) to 98 % on a 80 Mbit/s FTTH connection (1st line, 3rd column).



Top-100 Open-World Website Fingerprinting
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50 Mbit/s ADSL connection, F1 = 62.8 %



Cross-Connection Website Fingerprinting
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Trained on 50 Mbit/s ADSL, applied to 80 Mbit/s FTTH, F1 = 40 %



Live Demo



Video Call Detection
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Impact of Noise on Website Fingerprinting
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left, no noise: F1 = 77 % middle, training and test data noisy: F1 = 15 % right, only test data noisy: random guessing



Context, Impact, Disclosure

• SnailLoad is a generic problem of heterogenous networks (with different

throughputs)

• Many “remote” attacks can now be transformed to truly remote attacks

• We disclosed to Google / YouTube

• they investigated the issue for several weeks

• concluded that it is a generic problem
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Take Aways (Black Hat Sound Bytes)

• Any connection to a remote server can obtain high-resolution traces of your

activity

• Traces can leak websites and videos watched

• Throughput difference is the root cause → not trivial to fix
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