
Splitting The
Email Atom
Exploiting Parsers To
Bypass Access Controls

GARETH HEYES

Outline

Why email address parser
discrepancies matter

The shaky foundation

Parser discrepancies

- Unicode overflows

- Encoded-word

- Punycode

Methodology/Tooling

Defence

Takeaways

ADD FUNKY STARS

1.

2.

3.

4.

5.

6.

Why email address parser discrepancies
matter

Predicting an email
destination is

extremely difficult

The shaky
foundation

RFC2822

RFC “features”
Quoted local-part

"@"@example.com "foo bar"@example.com

Quoted pair

"\""@example.com "\\"@example.com

Comments

foo@example.com(bar) foo(bar)@example.com

(bar)foo@example.com

The wrong question

Which email is valid?

#$&*+/=?^_`{|}~-%psres.net(@example.com

psres.net!#$&*+/=?^_`{|}~-\@example.com

#$&*+/=?^_`{|}~-%psres.net(@example.com

Results in email to: #$&*+/=?^_`{|}~-@psres.net

Which email domain does it go to?

psres.net!#$&*+/=?^_`{|}~-\@example.com

Results in email to: #$&*+/=?^_`{|}~-@psres.net

● Separated by commas

● Final destination declared using colon

Source routes

@example1.com,@example2.com:foo@psres.net

example.com

The percent hack

foo % psres.net@example.com

foo @ psres.net

UUCP (Unix To Unix Copy)

● Early protocol before the internet

● Separates host and user part with exclamation mark

● Called the bang path

● Opposite order to an email address

psres.net!user

Archaic protocols back from the dead

Treated as a source route (Postfix 3.6.4)

Treated as UUCP (Sendmail 8.15.2)

psres.net!foo \ @example.com

foo%psres.net (@example.com

UUCP/source route discovery process

The target's special characters:

[a-z0-9!#$%&'*+\/=?^_`{|}~.-\\]+@[a-z0-9-]+(\.[a-z0-9-]+)*

!#$%&'*+\/=?^_`{|}~-collab\@psres.net

UUCP/source route discovery process

UUCP/source route discovery process

"collab\\"@psres.net> ORCPT=test;admin"@example.com

DEF CON Bonus slide:SMTP parameters in
Postfix

"psres.net!collab"(\"@example.com

DEF CON Bonus slide: More surprising email
parsing

collab%psres.net@[127.0.0.1]

DEF CON Bonus slide:More surprising email
parsing

Unicode
overflows

PHP chr() function generates characters 0x00-0x100/0-255

How unicode overflows work

while($bytevalue < 0) {
 $bytevalue += 256;
}
$bytevalue %= 256;

Generating an unicode overflow

Real world unicode overflows

Takeaway: Smuggle characters using unicode overflows to bypass validation

Encoded-
word

How encoded-word works

Probing for encoded-word

Encoded-word
case studies

Exploiting Gitlab Enterprise
servers with encoded spaces

Impact: Gain unauthorized
access to Gitlab Enterprise

servers

● Verify emails you don't control

● Access domain protected Gitlab Enterprise servers

● Bypass domain-based access control

...
250 OK
RCPT TO:<foo@example.com>
250 OK
...

SMTP conversation recap

Exploiting Gitlab IdP email verification

iso-8859-1

● Verify emails you
don't control

● Bypass
domain-based
access control that
use Gitlab as an iDP

Impact: Bypass domain-based
access controls

Exploiting Zendesk email verification

Impact: Gain access to email
domain protected support centres

● Verify email addresses from domains you don't control

● Bypass email domain validation on Zendesk

● Access email domain protected support centres

Exploiting Github IdP email verification

Verified Github emails

● Verify email addresses
from domains you
don't control

● Bypass domain-based
access controls

● Break into internal
networks

Impact: Bypassing domain-based
access controls on Cloudflare

Base64 encoded-word

Blast from the past

+ADw-script+AD4-alert(1)+ADw-/script+AD4-

Changing the charset

Combining UTF-7 & base64

Blending q-encoding and UTF-7

Encoded-word in other systems like
PHPMailer

Punycode

What is Punycode?
● Compatible with the current DNS system
● Always starts with xn--
● Special algorithm is used to decode the characters
● The domain münchen.com is encoded as:

xn--mnchen-3ya.com

● Compatible with the
current DNS system

● Always starts with
xn--

● Special algorithm is
used to decode the
characters

● The domain
münchen.com is
encoded as:
xn--mnchen-3ya.co
m

What is Punycode?

foo@xn--mnchen-2ya.com → foo@ümnchen.com

foo@xn--mnchen-3ya.com → foo@münchen.com

foo@xn--mnchen-4ya.com → foo@mnüchen.com

foo@xn--mnchen-5ya.com → foo@mncühen.com

foo@xn--0049.psres.net → foo@,.psres.net

Finding malformed
Punycode in the IDN PHP

library

foo@xn--0117.psres.net → foo@@.psres.net

Joomla incorrectly escaping emails

Generating an XSS vector from malformed Punycode

Generating an XSS vector from
malformed Punycode

Trying to exploit Joomla was very difficult

xn--x-0314.xn--0026.xn--0193.xn--0218

<x.. .=

Trying to exploit Joomla was very difficult

→
→xn--x-0314.xn--0026.xn--0193.xn--54_52932

<x.. .='

Generating a style tag

Completing the style tag

Abusing CSS invalid selectors

Exploiting Joomla with two separate accounts

Stealing CSRF tokens

CSRF the admin

● Attacker sends link to admin

● Extracted token is added to CSRF form

● CSRF edits admin template file plants backdoor

● Attacker visits backdoor gets RCE

Demo

Methodology

Methodology

<@_encoded_word_encode('...')>@<@/_encoded_word_encode>

Tooling

Tooling

<@_encoded_word_decode('...')>=40<@/_encoded_word_decode>

Defence

● Disable or filter encoded word

● Always verify emails

● Do not make security decisions based solely on
email domain

References

Email parsing:
https://www.jochentopf.com/email/address.html

https://nathandavison.com/blog/exploiting-email-address-parsing-with-aws-ses

https://medium.com/@fs0c131y/tchap-the-super-not-secure-app-of-the-french-government-84b31517d144

References

CSS Exfiltration:
https://vwzq.net/slides/2019-s3_css_injection_attacks.pdf

https://d0nut.medium.com/better-exfiltration-via-html-injection-31c72a2dae8b

Unicode:
https://www.sonarsource.com/blog/10-unknown-security-pitfalls-for-python/

https://www.jochentopf.com/email/address.html
https://nathandavison.com/blog/exploiting-email-address-parsing-with-aws-ses
https://medium.com/@fs0c131y/tchap-the-super-not-secure-app-of-the-french-government-84b31517d144
https://vwzq.net/slides/2019-s3_css_injection_attacks.pdf
https://d0nut.medium.com/better-exfiltration-via-html-injection-31c72a2dae8b
https://www.sonarsource.com/blog/10-unknown-security-pitfalls-for-python/

Valid email addresses can trigger major
parser discrepancies

Even addresses that end in "@example.com"
might go elsewhere.

As a result, it's never safe to use email
domains for access control enforcement

Takeaways

github.com/portswigger/
splitting-the-email-atom

@garethheyes

garethheyes.co.uk

