
Hardening HSMs for
Banking-Grade Crypto Wallets

Black Hat 2024

JP Aumasson, Chervine Majeri

Whois

JP
• Taurus co-founder & CSO
• First BHUS talk was in 2013

Chervine
• Taurus lead research engineer
• First BHUS talk is now

Crypto asset custody & issuance for banks (taurushq.com)
regulated and running a marketplace for tokenized assets (t-dx.com)
In Geneva, Zurich, London, Paris, Vancouver, Dubai

Outline

1. What is really an HSM?
2. Security and crypto internals
3. Attack surface and hardening
4. Best practices & a note on cloud HSMs

Disclaimer: This talk is based on our experience over 7 years with 3 HSM
models, deployed in production in multiple environments. YMMV.

Hardware security module (HSM)

“A dedicated crypto processor that is specifically designed
for the protection of the crypto key lifecycle” (HSM vendor)

Enterprise/cloud HSMs usually 1RU or PCIE card form factor
The actual HSM is the module in the appliance/card

HSM purpose

Store secret keys for crypto operations:
▪Signature, decryption, symmetric encryption, MAC

High-assurance domain thanks to isolation & anti-tampering
Protect keys in case of servers/workstations compromise

HSM use case examples

• Blockchain transaction signing and TEE
• Code signing (HSM mandatory for MS Win apps)
• Database encryption/decryption (usually via KEKs)
• PKI root of trust (for CAs, enterprise PKIs, etc.)

https://www.flickr.com/photos/okolkman/22789012910/in/album-72157661146853781/

HSM interfaces

Crypto interface over PCIe or USB, TCP/IP if network-attached
Admin interface over serial port, SSH, HTTP/REST + TLS, GUI

Security mechanisms (1/4)

• Local isolation (slots aka partitions)

Security mechanisms (2/4)

• Local isolation (slots aka partitions)
• RBAC, ABAC-ish model (with per-slot roles)

Security mechanisms (3/4)

• Local isolation (slots aka partitions)
• RBAC model (with per-slot roles)
• PKCS#11 Cryptoki API

Security mechanisms (4/4)

• Local isolation (slots aka partitions)
• RBAC model (with per-slot roles)
• PKCS#11 Cryptoki API
• FIPS 140-2/3 certified crypto and anti-tampering controls

Security mechanisms (5/4)

• Local isolation (slots aka partitions)
• RBAC model (with per-slot roles)
• PKCS#11 Cryptoki API
• FIPS 140-2/3 certified crypto and anti-tampering controls

May NOT include:
• Software exploit mitigations like ASLR and DEP
• Remote attestation mechanism

Internals overview (1/2)

• System-on-chip with a PPC core and crypto accelerators
• Some minimal Linux distrib, some bootloader
• Crypto software libraries
• Signed firmware updates

Internals overview (2/2)

• Crypto support: mainly FIPS incl. legacy algorithms
• “True RNG” seeding a NIST 800-90A DRBG

Custom modules

• Firmware extension software component loaded by users
• Replace the original firmware’s init()
• Must be developed C, using the vendor’s SDK
• Size limitation (ex: 8MB)

What could go wrong (1/3)

• Compromised caller creds = free HSM requests (no filtering)
• PKCS#11 intrinsic flaws and limitations (see Ledger’s paper)
• Bugs in the PKCS#11 implementation and HSM runtime

https://blog.inhq.net/posts/yubico-yubihsm-pkcs-vuln/

SSTIC 2019

What could go wrong (2/3)

• Knowns bugs in outdated OSS components (regreSSHion?)
• Cross-slot attacks (DoS, info leak, code exec?)
• Malicious custom module / supply-chain issues
• RNG issues (remember ROCA?)

What could go wrong (3/3)

Various HSM bugs:
• Remove a directory from the FS crashes if the name ands with “/”
• Logging "too much" (1 log per message) freezes the HSM freeze,

needing a power-cycle
• Client-side segfaults with certain ECC crypto interfaces
• Inconsistent crypto interface between firmware versions

HSM hardening

A quick tour of measures proposed to harden HSMs
• Deployed in production
• Known tricks for “power users”
• Most won’t work with cloud HSMs

1/6: Attack surface reduction

• PKCS#11 API override, to only allow “authorized” usage/args
• Use directly the filesystem (rather than PKCS#11 objects)

2/6: Enforce secure configuration

Custom code can enforce that attributes of
PKCS#11 objects are the most restrictive,
and stop its operations otherwise

Ex: Ensure that secret key are marked as
CKA_SENSITIVE and not CKA_EXTRACTABLE.

3/6: In-HSM business logic

Move business logic from servers/VMs to the HSM

Ex: Create blockchain transactions (signature, payload) after
enforcing a multi-sig quorum and governance rules

Benefits:
• Computation integrity and confidentiality protected
• Can interact with in-HSM crypto objects

Risks: Bugs leading to secrets leak or code execution

4/6: Application-level *AC

• Roles = users (request approvers), admins (rules approvers)
• Admins sign rules defining authorized quorums
• Users and admins sign with hardware tokens

Only admin pubkeys in the HSM

Tricks needed to prevent replay
and downgrade

5/6 Application-level secure channel

HSMs may support secure channels, but only at the network
level, or offer insufficient security (anon DH in old HSMs)

If the consumer of the HSM response is not the host talking to
the HSM, application-level security is needed (aka e2ee)

6/6: Minimize black-boxing

The proprietary HSM code is generally not open-source,
therefore harder to review for bugs, let alone fix them

Alternative: integrate code from auditable/OSS libraries via the
custom modules (may need tweaks/optimization/stripping)

Exception: randomness: HSM’s PRNG and entropy sources
Can post-process with a custom DRBG

Why a state?

Stateless HSMs are convenient and simple to manage
• Multiple instances behind a load balancer
• Immutable state configured once in a key ceremony

However, statefulness often needed for
• Anti-replay, anti-downgrade (ex: monotonous counter)
• Enforcement of security policies (ex: via timestamps)

Challenges of HSM states

• HSMs’ storage is limited, and I/O is slow
• High-availability needs at least 2 redundant HSMs
• State bounded in size (must fit in a ~2MB message)
• State transitions must be verifiable

Solution: trees!

Merkle trees & Merkle proofs

Principle: only reveal state components needed by a request
• Encode the state as a Merkle tree
• Admins sign the root, verified in the HSM
• Merkle proofs

What if the state (thus root) changes?
How to verify state changes given a partial state?

Merkle trees limitations

A root represents a list of data nodes
Logarithmic membership proof size

Read-only trees are easy…

How to insert/delete?
• Where to insert the data?
• How to efficiently “rebalance” the tree?

Red-black trees

• Allow updates on partial trees

• Keep Merkle-tree property

• Bounded height of at most 2log(N+1) with N nodes
• Self-balancing via simple “coloring rules”

oRB1: Root is black
oRB2: Any path from a node to a leaf has the same number of black nodes
oRB3: There can’t be an edge between two red nodes

Tree examples

• Rebalancing performed through rotations
• Rotated subtrees preserve RB and Merkle properties

Tree insertion

• Rebalancing is recursive
over the height of the tree

• Carries on so long as the
parent P is red

• Case 1:
oParent P and uncle U are both red

Tree insertion

Tree insertion

• Case 1:
oParent P and uncle U are both red

• Solution:
oRecolor both P and U to black
oRecolor GP to red
oNo impact on subtrees

Tree insertion

• Case 2:
oUncle U is black
oX is the left child of P

Tree insertion

• Case 2:
oUncle U is black
oX is the left child of P

• Solution
oRecolor P and GP

▪ Breaks RB2

Tree insertion

• Case 2:
oUncle U is black
oX is the left child of P

• Solution
oRecolor P and GP

oRotate GP to the right

oSubtrees not impacted

Tree insertion

• Case 3:
oUncle U is black
oX is the right child of P

Tree insertion

• Case 3:
oUncle U is black
oX is the right child of P

• Solution
oRotate P to the left

o Brings us back to case 2
with P and X swapped

Tree conclusion

• Red-black and Merkle properties can be combined in a
single structure

• Lets us perform state transitions on large datasets within a
low-memory HSM

• Inserting a user to a set of 1M requires revealing 20-40 users

Best practices (1/2)

Software defense
• Keep the HSM firmware updated
• Tighten PKCS#11 attributes (to the minimum needed)
• Enable security features (secure channel)
• Custom code: minimize dependencies
• Custom code: have solid build/deploy integrity (see SLSA.dev)

Best practices (2/2)

Access control
• Segregate accesses and credentials (admin/SO, slot user/SO)
• Minimize network exposure (no internet facing, whitelisting)

Key management
• Generate critical keys in key ceremonies (in- or off-HSM?)
• Have reliable & tested back-ups and DR procedures

Use HSM back-up/cloning?

On cloud HSM aka HSMaaS

Convenient cloud-based systems, notably as KMS back-end

Limitations:
• Access may be indirect via some cloud middleware
• May be multi-tenant, sharing hardware with other users
• Limited capability to configure the HSM and PKCS#11 settings
• Impossible to run custom code
• How to be sure it’s really an HSM and not an emulator?

Conclusion

HSMs + in-HSM custom logic is a powerful setup suitable for
various high-assurance security systems, but requires
significant investment in

• Bespoke hardening to reduce the attack surface
• Management of compute and storage limitations
• SDLC integrity and QA
• HSM model/vendor-specific shenanigans

Thank you

A joint work with the Taurus team

Acknowledgements:
André S., Antony V., Mattia T., Ryan H., Stefano Z., Tal B.

https://taurushq.com

	Slide 1: Hardening HSMs for Banking-Grade Crypto Wallets Black Hat 2024 JP Aumasson, Chervine Majeri
	Slide 3: Whois
	Slide 4: Outline
	Slide 6: Hardware security module (HSM)
	Slide 7: HSM purpose
	Slide 8: HSM use case examples
	Slide 9: HSM interfaces
	Slide 11: Security mechanisms (1/4)
	Slide 12: Security mechanisms (2/4)
	Slide 13: Security mechanisms (3/4)
	Slide 14: Security mechanisms (4/4)
	Slide 15: Security mechanisms (5/4)
	Slide 16: Internals overview (1/2)
	Slide 17: Internals overview (2/2)
	Slide 19: Custom modules
	Slide 20: What could go wrong (1/3)
	Slide 21: What could go wrong (2/3)
	Slide 22: What could go wrong (3/3)
	Slide 23: HSM hardening
	Slide 24: 1/6: Attack surface reduction
	Slide 25: 2/6: Enforce secure configuration
	Slide 26: 3/6: In-HSM business logic
	Slide 27: 4/6: Application-level *AC
	Slide 28: 5/6 Application-level secure channel
	Slide 29: 6/6: Minimize black-boxing
	Slide 31: Why a state?
	Slide 32: Challenges of HSM states
	Slide 33: Merkle trees & Merkle proofs
	Slide 34: Merkle trees limitations
	Slide 35: Red-black trees
	Slide 36: Tree examples
	Slide 37: Tree insertion
	Slide 38
	Slide 39: Tree insertion
	Slide 40: Tree insertion
	Slide 41: Tree insertion
	Slide 42: Tree insertion
	Slide 43: Tree insertion
	Slide 44: Tree insertion
	Slide 45: Tree conclusion
	Slide 47: Best practices (1/2)
	Slide 48: Best practices (2/2)
	Slide 49: On cloud HSM aka HSMaaS
	Slide 50: Conclusion
	Slide 51: Thank you A joint work with the Taurus team Acknowledgements: André S., Antony V., Mattia T., Ryan H., Stefano Z., Tal B. https://taurushq.com

