
#BHUSA @BlackHatEvents

Terrapin Attack: Breaking SSH Channel
Integrity by Sequence Number Manipulation

Fabian Bäumer

Ruhr University Bochum

Marcus Brinkmann

Ruhr University Bochum

Jörg Schwenk

Ruhr University Bochum

#BHUSA @BlackHatEvents

A Tale Of System Administration

srv-prod-01

Production

Sysadmin Bob

bob@srv-prod-01

SSH

mallory@srv-test-01

SSH

Trainee Mallory

srv-test-01

Test

N
e
tw

o
rk

 T
A

P

#BHUSA @BlackHatEvents

Demo

- A ‘Normal’ Workday For Bob

#BHUSA @BlackHatEvents

In The Next 30 Minutes You Will Learn…

• … how Mallory was able to mess with Bob’s user authentication

• … which other attack variants Mallory can perform

• … the specific requirements for Mallory’s attack to work

• … how Bob can protect himself against Mallory’s attack

Beyond that,

• … how adding modern cryptography to older protocols can go wrong

• … how we handled a protocol-level responsible disclosure

#BHUSA @BlackHatEvents

SSH Connection Protocol (RFC 4254)

SSH Authentication Protocol (RFC 4252)

SSH Transport Layer Protocol
(TLP) (RFC 4253)

=> Binary Packet Protocol

=> SSH Key Exchange

TCP / IP

Understanding SSH Is Key to Understanding
Mallory’s Attack

#BHUSA @BlackHatEvents

SSH-2.0-PuTTY-Release-0.80

SSH-2.0-OpenSSH_9.6p1

Step 1: Exchange of Protocol Version
Bob Server

#BHUSA @BlackHatEvents

SSH-2.0-PuTTY-Release-0.80

SSH-2.0-OpenSSH_9.6p1

KEXINIT: 𝑛𝑆, 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚_𝑙𝑖𝑠𝑡𝑠

KEXINIT: 𝑛𝐶 , 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚_𝑙𝑖𝑠𝑡𝑠

Step 2: Exchange of Supported Algorithms
ServerBob

#BHUSA @BlackHatEvents

Protocol Version Exchange

KEXINIT: 𝑛𝑠, 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚_𝑙𝑖𝑠𝑡𝑠

KEXINIT: 𝑛𝑐 , 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚_𝑙𝑖𝑠𝑡𝑠

KEXDHINIT: 𝑔𝑥

KEXDHREPLY: 𝑔𝑦, 𝑝𝑘𝑆, 𝑠𝑖𝑔

Step 3: Performing Key Exchange
ServerBob

Important: Computed

over a fixed subset of

message fields

#BHUSA @BlackHatEvents

NEWKEYS

KEXINIT: 𝑛𝑠, 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚_𝑙𝑖𝑠𝑡𝑠

KEXINIT: 𝑛𝑐 , 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚_𝑙𝑖𝑠𝑡𝑠

KEXDHINIT: 𝑔𝑥

KEXDHREPLY: 𝑔𝑦, 𝑝𝑘𝑆, 𝑠𝑖𝑔

NEWKEYS

Protocol Version Exchange

Step 4: Activating the Secure Channel
ServerBob

#BHUSA @BlackHatEvents

KEXINIT: 𝑛𝑠, 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚_𝑙𝑖𝑠𝑡𝑠

KEXINIT: 𝑛𝑐 , 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚_𝑙𝑖𝑠𝑡𝑠

KEXDHINIT: 𝑔𝑥

Protocol Version Exchange

NEWKEYS

NEWKEYS

SERVICEACCEPT: ssh-userauth

SERVICEREQUEST: ssh-userauth

EXTINFO

KEXDHREPLY: 𝑔𝑦, 𝑝𝑘𝑆, 𝑠𝑖𝑔

Step 5: Request User Authentication Service
Server

Replay

Attacks?

Bob

#BHUSA @BlackHatEvents

SSH Uses Implicit Sequence Numbers

Snd Rcv

0 0

Server

0 0

Snd Rcv

Bob

Sequence

numbers

are not

transmitted

#BHUSA @BlackHatEvents

SSH Uses Implicit Sequence Numbers

0 1

Server

1 0

Snd Rcv Snd Rcv

Bob

#BHUSA @BlackHatEvents

SSH Uses Implicit Sequence Numbers

1 1

Server

1 1

Snd Rcv Snd Rcv

Bob

#BHUSA @BlackHatEvents

SSH Uses Implicit Sequence Numbers
Server

NEWKEYS

NEWKEYS

1 1 1 1

Snd Rcv Snd Rcv

Bob

#BHUSA @BlackHatEvents

SSH Uses Implicit Sequence Numbers
Server

NEWKEYS

NEWKEYS

1 1 1 1

Snd Rcv Snd Rcv

Verified

through a

message

authentication

code (MAC)

Bob

#BHUSA @BlackHatEvents

SSH Uses Implicit Sequence Numbers

2 1

Server

1 2

NEWKEYS

NEWKEYS

Snd Rcv Snd Rcv

Bob

#BHUSA @BlackHatEvents

Introducing Sequence Numbers to the Flow
Server

Snd Rcv Snd Rcv

KEXINIT: 𝑛𝑠, 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚_𝑙𝑖𝑠𝑡𝑠

KEXINIT: 𝑛𝑐 , 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚_𝑙𝑖𝑠𝑡𝑠

KEXDHINIT: 𝑔𝑥

Protocol Version Exchange

NEWKEYS

NEWKEYS

SERVICEACCEPT: ssh-userauth

SERVICEREQUEST: ssh-userauth

EXTINFO

KEXDHREPLY: 𝑔𝑦, 𝑝𝑘𝑆, 𝑠𝑖𝑔

0 0

0 1

1 1

2 1

2 2

2 3

3 3

4 3

5 3

5 4

0 0

1 1

1 2

2 2

3 2

3 3

3 4

3 5

4 5

1 0

Bob

#BHUSA @BlackHatEvents

Step 6: Authenticating the User
Server

Snd Rcv Snd Rcv

Key Exchange

Protocol Version Exchange

NEWKEYS

SERVICEACCEPT: ssh-userauth

SERVICEREQUEST: ssh-userauth

EXTINFO

0 0

1 1

2 2

3 3

4 3

5 3

5 4

6 4

6 5

0 0

2 2

3 3

3 4

3 5

4 5

4 6

5 6

1 1

Bob

Algorithm Negotiation

USERAUTHREQUEST: bob:secret

USERAUTHSUCCESS

How can

Mallory mess

with this

protocol flow?

#BHUSA @BlackHatEvents

SERVICEACCEPT: ssh-userauth

USERAUTHREQUEST: mallory:password

USERAUTHSUCCESS

Mallory‘s Ultimate Goal: Inject Forged
Authentication Request

Server

Snd Rcv Snd Rcv

Key Exchange

Protocol Version Exchange

NEWKEYS

SERVICEREQUEST: ssh-userauth

EXTINFO

0 0

3 3

4 3

5 3

5 4

0 0

2 2

3 3

3 4

3 5

4 5

4 6

5 6

1 1

Bob

Algorithm Negotiation

Mallory

USERAUTHREQUEST: bob:secret

Injection not

possible

because

connection is

encrypted and

authenticated

1 1

2 2

#BHUSA @BlackHatEvents

Key Exchange

NEWKEYS

SERVICEACCEPT: ssh-userauth

SERVICEREQUEST: ssh-userauth

EXTINFO

Algorithm Negotiation

USERAUTHREQUEST: bob:secret

USERAUTHSUCCESS

Server

Snd Rcv Snd Rcv
Protocol Version Exchange

0 0

1 1

2 2

3 3

4 3

5 3

5 4

6 4

0 0

1 2

2 3

3 4

3 5

4 6

4 6

4 7

1 1

Bob Mallory

USERAUTHREQUEST: mallory:password

Mallory Tries To Move The Authentication
Request Into Unauthenticated Context…

Rcv verification

fails

#BHUSA @BlackHatEvents

USERAUTHREQUEST: mallory:password

Key Exchange

NEWKEYS

SERVICEACCEPT: ssh-userauth

SERVICEREQUEST: ssh-userauth

EXTINFO

Algorithm Negotiation

USERAUTHREQUEST: bob:secret

USERAUTHSUCCESS

… And Drops the First Authenticated Message to
Realign Sequence Numbers

Server

Snd Rcv Snd Rcv
Protocol Version Exchange

0 0

1 1

0 0

1 1

Bob Mallory

2 2

3 3

4 3

5 3

5 4

6 4

2 3

3 4

4 5

4 5

4 6

Rcv verification

succeeds again

#BHUSA @BlackHatEvents

Key Exchange

NEWKEYS

SERVICEACCEPT: ssh-userauth

SERVICEREQUEST: ssh-userauth

EXTINFO

Algorithm Negotiation

USERAUTHREQUEST: bob:secret

USERAUTHSUCCESS

Server

Snd Rcv Snd Rcv
Protocol Version Exchange

0 0

1 1

0 0

1 1

Bob Mallory

2 2

3 3

4 3

5 3

5 5

2 3

3 4

4 5

4 5

5 5

Authentication Succeeds Earlier Than Expected

USERAUTHREQUEST: mallory:password

#BHUSA @BlackHatEvents

Key Exchange

NEWKEYS

SERVICEACCEPT: ssh-userauth

SERVICEREQUEST: ssh-userauth

EXTINFO

Algorithm Negotiation

USERAUTHREQUEST: bob:secret

USERAUTHSUCCESS

Server

Snd Rcv Snd Rcv
Protocol Version Exchange

0 0

1 1

0 0

1 1

Bob Mallory

2 2

3 3

4 3

5 3

5 5

2 3

3 4

4 5

4 5

5 5

Mallory’s Attack Can Succeed by Delaying
Authentication Success

USERAUTHREQUEST: mallory:password

#BHUSA @BlackHatEvents

What Went Wrong Here?
L
a
x
 S

e
rv

e
r

S
ta

te

M
a

c
h

in
e Server accepted

user authentication
in unauthenticated
context.

Implementation Flaw

F
ix

e
d
 S

u
b
s
e
t

H
o
s
t

K
e
y

S
ig

n
a
tu

re Signature fails to
detect message
injection during
handshake.

Specification Flaw

L
in

k
e
d
 S

e
q
u
e
n
c
e

N
u
m

b
e
rs Sqn numbers are

maintained across
different encryption
contexts.

Specification Flaw

#BHUSA @BlackHatEvents

L
a
x
 S

e
rv

e
r

S
ta

te

M
a

c
h

in
e Server accepted

user authentication
in unauthenticated
context.

Implementation Flaw

F
ix

e
d
 S

u
b
s
e
t

H
o
s
t

K
e
y

S
ig

n
a
tu

re Signature fails to
detect message
injection during
handshake.

Specification Flaw

L
in

k
e
d
 S

e
q
u
e
n
c
e

N
u
m

b
e
rs Sqn numbers are

maintained across
different encryption
contexts.

Specification Flaw

Let’s Talk About Attack Variants

What if the server

accepts other

messages as well?

Message truncation inside the secure channel is a

(cryptographically) successful attack in itself.

Removing EXTINFO can negatively impact user

authentication!

#BHUSA @BlackHatEvents

Caveat: Truncating Encrypted Messages
May Hinder Subsequent Message’s

Decryption

#BHUSA @BlackHatEvents

But: ChaCha20-Poly1305 And EtM Are Popular

#BHUSA @BlackHatEvents

How Can Bob Protect Himself?

> 30 vendors support “strict kex”

~ 11 million servers offer “strict kex”

Countermeasure Our Suggestion
“Strict KEX”

(OpenSSH)

Reset sequence numbers at key installation

Authenticate the entire handshake transcript (hash)

Harden handshake to disallow unexpected messages

#BHUSA @BlackHatEvents

We Contacted 31 Vendors During Disclosure

Oct
2023

Initial contact with OpenSSH and AsyncSSH

Nov
2023

AsyncSSH published patch to fix implementation bugs

Initial contact with 29 additional vendors of SSH implementations

Dec
2023

Public Disclosure

Thanks to all involved parties for the smooth responsible disclosure process!

#BHUSA @BlackHatEvents

Lessons Learned

1. Terrapin is a novel cryptographic attack targeting SSH channel

integrity

• Exploitable in practice to downgrade connection‘s security (w/o implementation flaws)

• Enables exploitation of certain implementation flaws as a MitM

2. Widespread encryption modes are affected

• ChaCha20-Poly1305

• CTR / CBC ciphers alongside Encrypt-then-MAC

3. “Strict Kex” as a protocol-level countermeasure

• Requires support from client and server to take effect

#BHUSA @BlackHatEvents

Thanks! Questions?

https://terrapin-attack.com/

E-Mail: fabian.baeumer@rub.de
X (formerly Twitter): @TrueSkrillor

Mastodon: @Skrillor@infosec.exchange

https://terrapin-attack.com/

