
#BHUSA @BlackHatEvents

Unveiling Mac Security: 
A Comprehensive Exploration of 
Sandboxing and AppData TCC

Zhongquan Li & Qidan He



#BHUSA @BlackHatEvents

Zhongquan Li @Guluisacat

Senior security researcher from Dawn Security Lab of JD.com

• Focusing on bug hunting and fuzzing in Android, IoT, and Apple products

• Blog: https://imlzq.com

Qidan He @flanker_hqd

Director, Chief security researcher from Dawn Security Lab of JD.com

• Focusing on security architecture of mobile and cloud native security, bug hunting, anti-fruad

• Blog: https://blog.flanker017.me

Whoami

https://x.com/guluisacat
https://imlzq.com/
https://x.com/guluisacat
https://blog.flanker017.me/


#BHUSA @BlackHatEvents

• Security Lab of JD.com

• Found 200+ CVEs in Google, Apple, Samsung, Huawei, etc

• Members consisting of previous Pwn2Own and DEFCON winnners

• Pwnie Award 2022 winner for best privilege escalation – Mystique

• https://twitter.com/dawnseclab

• https://dawnslab.jd.com

About Dawn Security Lab

https://twitter.com/dawnseclab
https://dawnslab.jd.com/


#BHUSA @BlackHatEvents

Why I Switched from Android to Apple 
for Vulnerability Research

1 Better vulnerability disclosure policy

2 Higher bug bounties

3 I built a system using AFL + Unicorn to simulate and fuzz Android TAs.
By building a custom syscall API, it can be adapted for macOS/iOS

https://imlzq.com/android/fuzzing/unicorn/tee/2024/05/29/Dive-Into-Android-TA-BugHunting-And-Fuzzing.html

https://imlzq.com/android/fuzzing/unicorn/tee/2024/05/29/Dive-Into-Android-TA-BugHunting-And-Fuzzing.html


#BHUSA @BlackHatEvents

Goals and Findings
02

1. Analyze and exploit macOS 
userland vulnerabilities to identify 
fuzzing targets

2. Bypass all user space security 
mechanisms to gain full control of 
the computer

Goals

03

Over 40 exploitable logic 

vulnerabilities have been discovered

since July 2023

Findings



#BHUSA @BlackHatEvents

Content Adjustment 
Due to Unpatched Vulnerabilities



#BHUSA @BlackHatEvents

Agenda
1. Security Protections on macOS

2. Transforming a Traditionally Useless Bug into a Sandbox Escape

3. A Permission Granting Mechanism on macOS

4. Everything you need to know about AppData TCC

5. Summary



#BHUSA @BlackHatEvents

Section 1 : Security Protections 
on macOS



#BHUSA @BlackHatEvents

System Integrity Protection: Rootless

https://support.apple.com/en-us/102149

https://support.apple.com/en-us/102149


#BHUSA @BlackHatEvents

https://opensource.apple.com/source/xnu/xnu-7195.81.3/bsd/sys/csr.h.auto.html

Details: https://www.microsoft.com/en-us/security/blog/2021/10/28/microsoft-finds-new-macos-
vulnerability-shrootless-that-could-bypass-system-integrity-protection/

System Integrity Protection

https://opensource.apple.com/source/xnu/xnu-7195.81.3/bsd/sys/csr.h.auto.html
https://www.microsoft.com/en-us/security/blog/2021/10/28/microsoft-finds-new-macos-vulnerability-shrootless-that-could-bypass-system-integrity-protection/
https://www.microsoft.com/en-us/security/blog/2021/10/28/microsoft-finds-new-macos-vulnerability-shrootless-that-could-bypass-system-integrity-protection/


#BHUSA @BlackHatEvents

TCC

Works similarly to Android permissions

Dynamically applied when needed

General TCC bypass vulnerability is more valuable than userland root LPE



#BHUSA @BlackHatEvents

Targets

Arbitrary Files
Read and Write

RCE

MicrophoneCamera Screen Recording

Root LPE SIP Bypassing



#BHUSA @BlackHatEvents

Remote Attack Surfaces on macOS

Memory corruption 
vulnerabilities

Safari, Messages, Mail, 
FaceTime, Pictures, 

Video/Audio, PDF, etc.

Download and launch an 
untrusted app

Gatekeeper Bypass

Malicious documents

SBX from Office



#BHUSA @BlackHatEvents

Remote Attack Surfaces on macOS

Memory corruption 
vulnerabilities

Safari, Messages, Mail, 
FaceTime, Pictures, 

Video/Audio, PDF, etc.

Download and launch an 
untrusted app

Gatekeeper Bypass

Malicious documents

SBX from Office



#BHUSA @BlackHatEvents

Section 2: Transforming a Traditionally 
Useless Bug into a Sandbox Escape



#BHUSA @BlackHatEvents

App Sandbox Escape on macOS

Exploit sandboxd

or sandbox profiles

Exploit XPC services 

or syscalls

Launch a fully controlled 

non-sandboxed app



#BHUSA @BlackHatEvents

App Sandbox Escape on macOS

Exploit sandboxd

or sandbox profiles

Exploit XPC services 

or syscalls

Launch a fully controlled 

non-sandboxed app



#BHUSA @BlackHatEvents

The simplest app structure :

App on macOS



#BHUSA @BlackHatEvents

App on macOS

macOS supports different executable file formats depending on the chip 
architecture

Intel Chips
Shell scripts

x86_64 binaries

ARM Chips (Apple Silicon)
Supports ARM binaries by default

Supports x86_64 binaries and shell scripts with Rosetta installed



#BHUSA @BlackHatEvents

macOS supports different executable file formats depending on the chip 
architecture

Intel Chips
Shell scripts

x86_64 binaries

ARM Chips (Apple Silicon)
Supports ARM binaries by default

Supports x86_64 binaries and shell scripts with Rosetta installed

App on macOS



#BHUSA @BlackHatEvents

Security Protection : Quarantine

Files modified by sandboxed apps
are assigned the Quarantine 

attribute 

Prevents execution 
if without user consent



#BHUSA @BlackHatEvents

Quarantine Protection on macOS

Flags

Time Stamp

Modifier

UUID



#BHUSA @BlackHatEvents

Quarantine Protection on macOS

Flags

Time Stamp

Modifier

UUID



#BHUSA @BlackHatEvents

Quarantine Protection on macOS：
Untrusted App

Download a file with Safari,
the file will be tagged with

Quarantine attribute



#BHUSA @BlackHatEvents

Gatekeeper blocks
its launch

Quarantine Protection on macOS：
Untrusted App



#BHUSA @BlackHatEvents

• We need to go to System Settings to allow the operation 

• Admin password needed

Quarantine Protection on macOS

https://support.apple.com/en-us/102445

https://support.apple.com/en-us/102445


#BHUSA @BlackHatEvents

01

Click Open Anyway

02

Click Open once again

03

The app finally launches, syspolicyd adds its quarantine flags with 0x40

Quarantine Protection on macOS：
Untrusted App



#BHUSA @BlackHatEvents

Quarantine Protection on macOS

Launch the user-permitted app, 
syspolicyd will not prevent its launch 
because the quarantine flags contains 0x40



#BHUSA @BlackHatEvents

• Only a single additional click is required to launch the notarized app

Quarantine Protection on macOS：
Trusted App



#BHUSA @BlackHatEvents

• If the user downloads an untrusted app, launching the app requires multiple clicks 

and the admin password

• If the app has been notarized, an additional click is still needed to launch the app

Nice security protection effectively mitigate the 1-Click RCE attack surface

Quarantine Protection on macOS:
Summary



#BHUSA @BlackHatEvents

Can We Launch an Executable File
Without Modifying Its Quarantine Flags?

Use an app folder 

that doesn‘t set the Quarantine attribute 

to wrap the executable file

YES



#BHUSA @BlackHatEvents

Can We Launch an Executable File
Without Modifying Its Quarantine Flags?

• Nice Feature!

• If there is a vulnerability that allows us to

create an app folder without quarantine

attribute, can we use it to bypass the

sandbox?



#BHUSA @BlackHatEvents

SBX with an Arbitrary Folder Creation 
Vulnerability

Failed



#BHUSA @BlackHatEvents

Why?

Launchable
01

Unlaunchable

Quarantine Flag != 0086

02

Quarantine Flag == 0086



#BHUSA @BlackHatEvents

My Hypothesis

Any write operation to a file will be 
assigned the 0086 flag
• The system will use the strictest policies to 

handle this file

The design of Quarantine 
incorporates the concept of 

whether the user has permitted 
this operation

Not authorized Authorized

Any write operation to a file will be 
assigned a flag other than 0086
• E.G : 0081/0082/0083

• The system will handle it in a softer way



#BHUSA @BlackHatEvents

https://github.com/apple-oss-distributions/WebKit/blob/WebKit-

7618.2.12.11.6/Source/WebCore/PAL/pal/spi/mac/QuarantineSPI.h

Validating My Hypothesis: 
From a Code Perspective

https://github.com/apple-oss-distributions/WebKit/blob/WebKit-7618.2.12.11.6/Source/WebCore/PAL/pal/spi/mac/QuarantineSPI.h
https://github.com/apple-oss-distributions/WebKit/blob/WebKit-7618.2.12.11.6/Source/WebCore/PAL/pal/spi/mac/QuarantineSPI.h


#BHUSA @BlackHatEvents

https://opensource.apple.com/source/WebKit2/WebKit2-

7610.4.3.0.3/UIProcess/Cocoa/WKShareSheet.mm.auto.html

Validating My Hypothesis: 
From a Code Perspective

https://opensource.apple.com/source/WebKit2/WebKit2-7610.4.3.0.3/UIProcess/Cocoa/WKShareSheet.mm.auto.html
https://opensource.apple.com/source/WebKit2/WebKit2-7610.4.3.0.3/UIProcess/Cocoa/WKShareSheet.mm.auto.html


#BHUSA @BlackHatEvents

Download the firmware:

• https://ipsw.me/

• https://developer.apple.com/download/

Extract Quarantine.kext

https://ipsw.me/
https://developer.apple.com/download/


#BHUSA @BlackHatEvents

Extract Quarantine.kext



#BHUSA @BlackHatEvents

• A sandboxed app is not allowed to modify files' Quarantine attribute

Process to Generate the Quarantine flag



#BHUSA @BlackHatEvents

Process to Generate the Quarantine flag

If the input flag does not contain 0x40 and the 

lowest two bits are non-zero, the 0x80 flag will be 

added

Final Quarantine Flag = Input_Flag | 0x80



#BHUSA @BlackHatEvents

Analyze Quarantine.kext

0081 : Download

0082 : Sandbox

0083 : Sandbox + Download

0086 : Sandbox + Hard



#BHUSA @BlackHatEvents

Analyze Quarantine.kext
01 03

02



#BHUSA @BlackHatEvents

SBX Through Launching a 
Non-Sandboxed App

01
Identify a vulnerability that allows 

the creation of an app folder 

without the quarantine attribute

02
Discover a vulnerability or utilize 

a feature to create an executable 

file with a quarantine flag other 

than 0086



#BHUSA @BlackHatEvents

CVE-2023-42947: Creating an App Folder 
Without the Quarantine Attribute

https://support.apple.com/en-us/HT214036

Impact : macOS 10.15 – 14.0

https://support.apple.com/en-us/HT214036


#BHUSA @BlackHatEvents

CVE-2023-42947: Creating an App Folder 
Without the Quarantine Attribute

Application Container

~/Library/Container/{App_Bundle_ID} 

Group Container

~/Library/Group Container/{Group_ID} 



#BHUSA @BlackHatEvents

Group Container:
The differences between Mac and iOS

https://developer.apple.com/documentation/foundation/

nsfilemanager/1412643-containerurlforsecurityapplicati

Below macOS 15, the group containers of third-party apps 

are not protected and behave differently compared to iOS

https://developer.apple.com/documentation/foundation/nsfilemanager/1412643-containerurlforsecurityapplicati
https://developer.apple.com/documentation/foundation/nsfilemanager/1412643-containerurlforsecurityapplicati


#BHUSA @BlackHatEvents

Group Containers : Below 14.0

01.
iOS: Upon app launch, Container Manager automatically creates the corresponding group containers

and restricts access based on teamID

02.
macOS: Container Manager does not automatically create group containers for an app upon its 

first launch
They are only created when the user calls API



#BHUSA @BlackHatEvents

• Container Manager is the core management component for app sandboxing, it has FDA 

access and also faces some sandbox restrictions

• There is a path traversal vulnerability in group container folder creation process

• The created folder isn’t tagged with the quarantine attribute

• This API can also be triggered via XPC

CVE-2023-42947: Path Traversal



#BHUSA @BlackHatEvents

[macOS 14.1 - 14.5] App’s group containers are now automatically created upon the app‘s first launch

The containerURLForSecurityApplicationGroupIdentifier API only returns the URL and does not 

perform folder creation

CVE-2023-42947: Patch



#BHUSA @BlackHatEvents

SBX Through Launching a 
Non-Sandboxed App

01
Identify a vulnerability that allows 

the creation of an app folder 

without the quarantine attribute

02
Discover a vulnerability or utilize 

a feature to create an executable 

file with a quarantine flag other 

than 0086



#BHUSA @BlackHatEvents

0082 Routes

Route 3

Abuse Apple Event

Route 4

Abuse
Clipboard

Route 2

Abuse 
User-Selected

Route 1

Privilege
Entitlement



#BHUSA @BlackHatEvents

Route 1 : Privilege Entitlement



#BHUSA @BlackHatEvents

Route 1 : Privilege Entitlement
• As long as the app declares the entitlement, 

any operation on files will be marked as 0082

quarantine flag

• Regardless of whether the app actually has 

read-write permissions for the Downloads folder

• This entitlement is widely used in many 

applications



#BHUSA @BlackHatEvents

Route 1 : Examples

WhatsAppParallels Desktop

Telegram

Examples

Apple Mail

Apple Messages

WPS Office Bluetooth File Exchange

WeChat



#BHUSA @BlackHatEvents

SBX for Apple Mail



#BHUSA @BlackHatEvents

Microsoft Word and many other applications don‘t declare the entitlement. 

We need to find another way to exploit them.

Route 1 : Limitations



#BHUSA @BlackHatEvents

Route 2: Abuse User-Selected Feature



#BHUSA @BlackHatEvents

What is User-Selected Feature

If Terminal attempts to open `~/Documents/flag.txt`

with TextEdit, it will be denied.

• flag.txt is a protected file

• Neither the requesting Terminal nor the handling

TextEdit has access to it



#BHUSA @BlackHatEvents

What is User-Selected Feature
• However, if we double-click on `~/Documents/flag.txt` in Finder, TextEdit will be able to load the 

file correctly

• This is because the user explicitly wants to use TextEdit to open `flag.txt`, so the OS will fully grant 

file access to TextEdit

• This is called the User-Selected / User-Approved feature



#BHUSA @BlackHatEvents

What is User-Selected Feature
• From a system design perspective, User-Selected / User-Approved feature is one of the most 

powerful functions on mac

• Only Root and SIP can limit its behavior

• The design of Quarantine incorporates the concept of whether the user has permitted this 

operation

Can we use the User-Selected / User-Approved feature to change the Quarantine flag?



#BHUSA @BlackHatEvents

Give It a Try

Before modification

After modification

The answer is Yes

If an action is approved by the user, it will not be 

marked with QTN_FLAG_HARD



#BHUSA @BlackHatEvents

Route 2: Receiving a File and Choosing 
Word to Handle the Document

Double click

Any subsequent file
operations performed 

by Word

Receive a 
document 

Word gains full control 
over the document

Quarantine flag:
0082



#BHUSA @BlackHatEvents

1. Inject a payload into the received document

2. Set the previously created non-sandboxed app's executable file as a symbolic link pointing to this 

modified document

Route 2: Microsoft Word SBX
under macOS 14.0



#BHUSA @BlackHatEvents

Text Here

Title



#BHUSA @BlackHatEvents

Why the Exploit Failed on macOS 14?

08.20.2023 09.26.2023

macOS 10.15 - macOS 13.5

SBX : CVE-2023-42947 + Router 2 macOS 14.0



#BHUSA @BlackHatEvents

• Because macOS 14 introduced a new TCC : AppData

• This was the first time I truly experienced the impact of

security protections on exploit development

Why the Exploit Failed on macOS 14?



#BHUSA @BlackHatEvents

New TCC on macOS 14 : AppData

• Below macOS 14, any non-sandboxed process

could access the private containers of any third-

party app, such as WhatsApp's and Telegram's

• The new TCC effectively closes this attack

surface



#BHUSA @BlackHatEvents

Impact of AppData TCC on Exploit
• If the executable file is a shell script, /bin/sh would execute this script

• /bin/sh does not have access to the private

container folder of WeChat, which would

prevent the script from launching



#BHUSA @BlackHatEvents

Regular File vs. Symbolic link
Hold on! A question arises

• Why can an executable file be accessed and launched if it is a regular file but not when it is a 

symbolic link?

• The file hello is in the HelloMac’s private container folder, so why can /bin/sh access it even it is

protected by AppData TCC?



#BHUSA @BlackHatEvents

https://support.apple.com/HT214088

https://support.apple.com/HT214086

https://support.apple.com/HT214084

https://support.apple.com/HT214081

If a directory ends with “.app”, all apps can directly access its contents, regardless of whether the 

directory is protected by TCC

Vulnerability : NO CVE

https://support.apple.com/HT214088
https://support.apple.com/HT214086
https://support.apple.com/HT214084
https://support.apple.com/HT214081


#BHUSA @BlackHatEvents

• We cannot use the vulnerability to access files in some sensitive directories now

• But we can still launch apps from protected directories

• It seems that Apple wants to keep the exception for launching apps

NO CVE：Patch



#BHUSA @BlackHatEvents

Route 3 : Abuse OpenFile Apple Event



#BHUSA @BlackHatEvents

• User-Selected is a crucial feature

• macOS should ensure that malicious applications cannot emulate click events or trigger the 

permission-granting mechanism without user interaction

Route 3 : Abuse OpenFile Apple Event



#BHUSA @BlackHatEvents

Route 3 : Abuse OpenFile Apple Event

Using `open -a {AppID} ./hello.txt` will
make the specified app open hello.txt

01

Once an app implements the application:openfile
and application:openfiles interfaces, it can freely 
handle the input files

02 Subsequent operations on the input 
file will be treated as user-approved 
and will tag the file with the 0082
quarantine flag instead of 0086

03



#BHUSA @BlackHatEvents

Macro.docm

Title



#BHUSA @BlackHatEvents

• This exploit opens a new UI to handle a document, making the attack noticeable to the user, 

which is not ideal for weaponization

• If an application has not implemented the openfile and openfiles interfaces, this method will not 

work

Is there a more general, silent, and weaponizable approach we can use?

Route 3 : Limitations



#BHUSA @BlackHatEvents

Route 4 : Abuse Clipboard



#BHUSA @BlackHatEvents

The Flaw in Clipboard on macOS

The Clipboard component 
on macOS 

does‘t protected

Every process can access 
the Universal Clipboard, 

including sandboxed apps

The copy operation on any 
files will share the file 

access with other processes



#BHUSA @BlackHatEvents

Title



#BHUSA @BlackHatEvents

• The Clipboard not only breaks the sandbox restrictions but also allows us to use macOS as a 

stepping stone to compromise the user's iOS device

• By abusing macOS's Handoff feature, we can monitor, hijack, and modify Clipboard data on iOS, 

such as altering copied Bitcoin wallet addresses and stealing mnemonic phrases

Cross-Device Clipboard Exploitation



#BHUSA @BlackHatEvents

iOS 0-Day?

macOS 0-Day



#BHUSA @BlackHatEvents

• When I prepared my PPT, iPhone Mirroring hadn't been released yet

• I'm not sure how it works, but the function sounds risky 

• Taking over my Mac could mean taking over my iPhone silently 

• The demand for macOS 0-day exploits may increase in the future

macOS 15 : iPhone Mirroring



#BHUSA @BlackHatEvents

Route 4 : Abuse Clipboard to
Modify Quarantine Flag

Can we abuse the Clipboard component to help us achieve SBX?

Copy operations are mistakenly assumed to have user consent

YES



#BHUSA @BlackHatEvents



#BHUSA @BlackHatEvents

SBX Through Launching a 
Non-Sandboxed App

01
Identify a vulnerability that allows 

the creation of an app folder 

without the quarantine attribute

02
Discover a vulnerability or utilize 

a feature to create an executable 

file with a quarantine flag other 

than 0086



#BHUSA @BlackHatEvents

• Traditionally, an arbitrary folder creation vulnerability is considered harmless and cannot lead to 

any exploitable outcome

• However, on macOS, by combining some exploit methods to modify the quarantine flag, such a 

seemingly useless vulnerability can be transformed into a universal sandbox escape

• I first discovered the arbitrary folder creation vulnerability and spent two weeks figuring out how to 

exploit it. Do not ignore seemingly useless vulnerabilities, especially when analyzing a new OS

Section 2 : Conclusion



#BHUSA @BlackHatEvents

Good Luck

• I believe the system still contains many APIs 

that allow for unauthorized folder creation 

• Enjoy！

• Good luck for your bug hunting！



#BHUSA @BlackHatEvents

Answering
• Gergely Kalman (@gergely_kalman) found a SBX vulnerability: https://gergelykalman.com/CVE-2023-

32364-a-macOS-sandbox-escape-by-mounting.html

• : ) The answer is: Yes, but we need to do a bit more if we want to achieve a general sandbox escape

https://x.com/gergely_kalman
https://gergelykalman.com/CVE-2023-32364-a-macOS-sandbox-escape-by-mounting.html
https://gergelykalman.com/CVE-2023-32364-a-macOS-sandbox-escape-by-mounting.html


#BHUSA @BlackHatEvents

Targets

Arbitrary Files
Read and Write

RCE

MicrophoneCamera Screen Recording

Root LPE SIP Bypassing



#BHUSA @BlackHatEvents

Section 3:  A Permission Granting 
Mechanism on macOS



#BHUSA @BlackHatEvents

• Next, we need to discuss the newly introduced AppData TCC in macOS 14 as it hinders our 

previous exploit

• Before that, we first need to understand a crucial permission granting mechanism on macOS, 

MACL（Mandatory Access Control List）

• AppData TCC is based on MACL

Section 3: A Permission Granting 
Mechanism on macOS



#BHUSA @BlackHatEvents

What does the MACL look like?

TextEdit doesn’t have 
permission to access 
`~/Documents/flag.txt`

What happened

Double-click flag.txt in 
Finder

TextEdit gains access to 
flag.txt



#BHUSA @BlackHatEvents

What does the MACL look like?

TextEdit doesn’t have 
permission to access 
`~/Documents/flag.txt`

What happened

Double-click flag.txt in 
Finder

TextEdit gains access to 
flag.txt

I believe 
a permission granting 

mechanism is at work here



#BHUSA @BlackHatEvents

Two Ways to Limit File Access

1. Use a database to record who can access the file

• For example, use TCC.db to record who can access the Desktop 

• Precisely controlling access to every single file is very costly

2. Mark the file with some properties 

• More suitable for precise control over file access permissions



#BHUSA @BlackHatEvents

What does the MACL look like?

Mark the file with some properties: 

Mandatory Access Control List



#BHUSA @BlackHatEvents

GuluBadFinder : CVE-2023-42850



#BHUSA @BlackHatEvents

GuluBadFinder : CVE-2023-42850

01
Finder uses the default app to

open the file based on its

Uniform Type Identifier

02

macOS generates the MACL
attribute to allow the default
app to access the file

03

Finder informs the app to
open the file



#BHUSA @BlackHatEvents

Text Here

GuluBadFinder : CVE-2023-42850



#BHUSA @BlackHatEvents

• If we can replace the default file handler, we can trick Finder into automatically granting our 

application access to any file when it opens the file

• E.g. :

- Safari / History.db

- Messages / chat.db

- etc.

GuluBadFinder : CVE-2023-42850



#BHUSA @BlackHatEvents

The app can register supported file types in Info.plist in this way:

GuluBadFinder : CVE-2023-42850



#BHUSA @BlackHatEvents

https://github.com/Lord-Kamina/SwiftDefaultApps

The UTI of Database is dyn.ah62d4rv4ge80k2u

GuluBadFinder : CVE-2023-42850

https://github.com/Lord-Kamina/SwiftDefaultApps


#BHUSA @BlackHatEvents

Text Here

Title



#BHUSA @BlackHatEvents

• For these security protections on file:

SIP > MACL > TCC

• As long as a file is tagged with the MACL attribute, even if it is protected by TCC, a permitted app 

can still access the file

The Role of MACL



#BHUSA @BlackHatEvents

Unpatched Vulnerabilities

5 Relevant Vulnerabilities Still Awaiting Patches



#BHUSA @BlackHatEvents

Section 4: Everything you need to know 
about AppData TCC



#BHUSA @BlackHatEvents

• When a sandboxed app launches, Secinitd requests ContainerManagerd to create a private 

container folder in ~/Library/Containers for this app based on its bundle ID

• For example: ~/Library/Containers/gulucat.HelloMac/Data

Section 4: Everything you need to know 
about AppData TCC



#BHUSA @BlackHatEvents

Data Folder

• The Data folder is the actual private container folder for the app 

• It has the MACL attribute, which contains information about all apps allowed to access it 



#BHUSA @BlackHatEvents

• Secinitd registers the app container

• Apply MACL to the Data folder

How to generate MACL:
Based on macOS 14.5



#BHUSA @BlackHatEvents

1. Trusted processes can access its private 

container folder

2. Apps developed by the same developer can 

access its private container folder

_applyPrivacyProtectionExceptionPolicy



#BHUSA @BlackHatEvents

WeType can access WeChat’s private container folder

Route 1 Demo : Info.plist of WeChat



#BHUSA @BlackHatEvents

Route 2 : DefaultSameTeamException



#BHUSA @BlackHatEvents

Secinitd owns “com.apple.private.security.appcontainer-authority”

Analyze Sandbox.kext



#BHUSA @BlackHatEvents

Analyze Sandbox.kext
Different MACL generation strategies based on the type



#BHUSA @BlackHatEvents

Different MACL generation strategies based on the type

Analyze Sandbox.kext



#BHUSA @BlackHatEvents

Different MACL generation strategies based on the type

Analyze Sandbox.kext



#BHUSA @BlackHatEvents

Different MACL generation strategies based on the type

Analyze Sandbox.kext



#BHUSA @BlackHatEvents

These MACL generation strategies are essentially similar, all involving SHA-256 hash calculations 

with some differences in the details

Analyze Sandbox.kext



#BHUSA @BlackHatEvents

Abuse AppData TCC

Secinitd grants launching sandboxed apps access 
to specific folders

01

MACL can bypass all file TCC limitations

02

• If we can exploit AppData TCC, we can access arbitrary files with nearly FDA-level permissions, 

except we cannot modify TCC.db



#BHUSA @BlackHatEvents

GuluBadContainerManager :
CVE-2023-42932



#BHUSA @BlackHatEvents

If ~/Library/Containers/gulucat.HelloMac/Data is a symbolic link,

Secinitd will still update the destination folder’s MACL attribute with the launching app’s teamID

GuluBadContainerManager : 
CVE-2023-42932



#BHUSA @BlackHatEvents

GuluBadContainerManager : 
CVE-2023-42932 Patch



#BHUSA @BlackHatEvents

GuluBadContainerManager2 : 
CVE-2024-23215



#BHUSA @BlackHatEvents

GuluBadContainerManager2 : 
CVE-2024-23215

The Container Manager first creates a 

temporary folder at

~/Library/Staging/{RANDOM_UUID} 



#BHUSA @BlackHatEvents

After creation, rename the folder to

~/Library/Containers/{bundle_id} 

GuluBadContainerManager2 : 
CVE-2024-23215



#BHUSA @BlackHatEvents

• ~/Library/Staging was not protected by TCC. Anyone could access it

• Race Condition vulnerability here

• Before renaming, we could replace the {RANDOM_UUID}/Data folder with a symbolic link 

• As a result, the victim folder would be tagged with the malicious sandboxed app’s MACL attribute

GuluBadContainerManager2 : 
CVE-2024-23215



#BHUSA @BlackHatEvents

GuluBadContainerManager2 
CVE-2024-23215 PoC



#BHUSA @BlackHatEvents

• ~/Library/Staging moves to ~/Library/ContainerManager/Staging

• The folder is protected by TCC and we cannot access the temporary files any more

GuluBadContainerManager2 
CVE-2024-23215 Patch



#BHUSA @BlackHatEvents

GuluBadContainerManager3 : 
CVE-2024-27872



#BHUSA @BlackHatEvents

GuluBadContainerManager3 : 
CVE-2024-27872

Secinitd requests

ContainerManagerd to create

the app container folder

ContainerManagerd creates

the container folder in

~/Library/Containers/

Secinitd requests
Sandbox.kext to update the
MACL attribute of the Data 

folder

01 0302



#BHUSA @BlackHatEvents

GuluBadContainerManager3 : 
CVE-2024-27872

Secinitd requests

ContainerManagerd to create

the app container folder

ContainerManagerd creates

the container folder in

~/Library/Containers/

Secinitd requests
Sandbox.kext to update the
MACL attribute of the Data 

folder

01 0302

Data folder is not protected

Data folder is protected
Timing Window



#BHUSA @BlackHatEvents

GuluBadContainerManager3 : 
PoC Step 1

Monitor Data folder creation; 

if found, replace with a symbolic link

01
ContainerManagerd prevents the launch of the 

malicious sandboxed app due to the patch for 

GuluBadContainerManager CVE-2023-42932

02

• But Secinitd still requests Sandbox.kext to update the Data folder's MACL attribute 

• As a result, the folder pointed to by the symbolic link has been erroneously assigned the MACL attribute



#BHUSA @BlackHatEvents

GuluBadContainerManager3 : 
PoC Step 1



#BHUSA @BlackHatEvents

1. Replace the symbolic link with a normal Data folder

• Next time we launch the malicious sandboxed app, ContainerManagerd won't block it

2. Register the sbpl

• If not, the app cannot access the victim folder because of the sandbox restrictions even if it is on 

the folder's MACL trusted list 

GuluBadContainerManager3 : 
PoC Step 2



#BHUSA @BlackHatEvents



#BHUSA @BlackHatEvents



#BHUSA @BlackHatEvents

In macOS 15, the group containers of third-party apps are protected by AppData TCC too

Hello Mac 15

Additionally, the “~/Library/Group Containers” folder is not writable



#BHUSA @BlackHatEvents

Have You Identified an Attack Surface 
in AppData TCC ?



#BHUSA @BlackHatEvents

Have You Identified an Attack Surface 
in AppData TCC ?

AppData TCC 

Protect the data of 
third-party applications

Allows access only to 
trusted applications

Does not provide 
developers with an option 

to create a blocklist

Purpose

Flaw

Effect



#BHUSA @BlackHatEvents

AllowList vs. BlockList

AllowList

Only apps on the allowlist are permitted

BlockList

Apps on the blocklist are not permitted



#BHUSA @BlackHatEvents

AllowList vs. BlockList

AllowList

Only apps on the allowlist are permitted

BlockList

Apps on the blocklist are not permitted

What if the trusted app
no longer trusted?



#BHUSA @BlackHatEvents

• If any trusted application has an N-Day vulnerability, like the dylib hijacking vulnerability, the 

attacker can download the old version, achieve LPE, and then access the sensitive files of the 

latest app

• A vulnerability that only affected specific versions has turned into a persistent issue that 

developers cannot fix

Have You Identified an Attack Surface 
in AppData TCC ?



#BHUSA @BlackHatEvents

The developer can configure the allowlist to limit who can access the folder, but it can not block this 

exploit 

• The allowlist is a way to allow other processes to access the sandboxed app’s private container 

folder. Whatever the configuration is, the sandboxed app itself can still access the private container 

folder

• Even if the allowlist works, it only compares the teamID in the allowlist. The vulnerable older 

version of the sandboxed app has a valid teamID, so you cannot block its launch

Allowlist Can Not Block This Exploit



#BHUSA @BlackHatEvents

Collect these vulnerable old version apps

1. Achieve RCE on the victim's macOS, intending to escalate privileges or steal sensitive data, but 

discover that the data is protected by AppData TCC

2. The protected data is guarded by a sandboxed app, and the latest version is secure with no LPE 

vulnerabilities 

3. However, an older, vulnerable version can still be exploited. Download the vulnerable app to the 

victim's macOS to achieve LPE 

To Red Teams



#BHUSA @BlackHatEvents

1. Create a blocklist 

• If the app has an n-day vulnerability, developers can add the vulnerable app's cdhash to the 

blocklist

• These blocked older version apps cannot access the latest app's private container folder

2. If the current running app version is lower than the version that was last run, prompt the user with 

an alert

To Apple : Suggestions



#BHUSA @BlackHatEvents

• If an application has had multiple privilege escalation vulnerabilities in its history, it is advisable not 

to grant excessive TCC permissions to that application for security reasons

• Apple has introduced several security mechanisms, such as trustcache, to address these issues 

• However, these mechanisms currently focus mainly on the security of Apple's apps and do not yet 

cover third-party apps

TCCD Has a Similar Attack Surface



#BHUSA @BlackHatEvents

Targets

Arbitrary Files
Read and Write

RCE

MicrophoneCamera Screen Recording

Root LPE SIP Bypassing



#BHUSA @BlackHatEvents



#BHUSA @BlackHatEvents

Unpatched Vulnerabilities

Over 30 Relevant Vulnerabilities Still Awaiting Patches



#BHUSA @BlackHatEvents

Summary



#BHUSA @BlackHatEvents

• Finding an arbitrary folder creation vulnerability on macOS is equivalent to finding a sandbox 

escape vulnerability

• MACL: A permission granting mechanism on macOS

• Everything you need to know about AppData TCC

• Abusing N-Day vulnerabilities in outdated versions of installed third-party apps to bypass TCC

Takeaways



#BHUSA @BlackHatEvents

• Android uses a similar MAC approach – SELinux and DAC approach based on UID and GID

• Sensitive access enforced by XML-based permission and signatures

• Sandboxed processes run in isolated context, with limited access to resources (drivers, services, 

syscalls etc)

• Escaping the sandbox by attacking binder driver and core syscalls

• Or application-relevant IPCs (Chrome IPC for renderer process)

Comparison with Other OS: 
Android



#BHUSA @BlackHatEvents

• APL: Ability Privilege Level for apps: normal, system_basic, system_core

• Permission can be granted by User_grant, System_grant

• Permission can be dynamically assigned by ACL

Comparison with Other OS: 
HarmonyOS Next



#BHUSA @BlackHatEvents

Thank you

@Guluisacat

https://x.com/Guluisacat

