\ o/

blackhat
USA 2024

AUGUST 7-8, 2024

BRIEFINGS

From HAL to HALT: Thwarting
Skynet's Siblings in the GenAl
Coding Era

Chris Wysopal

Co-founder & CTO, Veracode VE RACO])E

BBBBBBBBBBBBBBBBBBBB

One of the 1t vulnerability researchers, member
of hacker think tank, LOpht in 1990s

Unites States Senate testimony - 19 May 1998

Using Good Hackers to
Battle Bad Hackers

FYOUHAVEAMURKY PASTAND DOUBT
:[you could become a dot-com millionaire,

think again. Last week a scraggly band of
hackers known as “LOpht Heavy Industries”
joined with some straitlaced tech execs to

form @ Stake, an Internet-security consult-
ing firm.

Into the light: Once shadowy computer code
warriors like Kingpin are going legit

Newsweek, January 17, 2000

Improve the
Security of
Your Product
by Breaking
Into It

strategies Ip computers ond commun
rg
r|, a | 1 A | |
'HE EETIMES
4 4 |]9
\ | | |

They don’t bui
products; tf
tear them apart
et | ot el and that's why
= SSmis i they have become

' .'E“E
’, the unofficial van

ol UNEREROUND
"';ﬂui LL‘* Sl

Founded
@stake security
research team
and then
Veracode to

build security
into SDLC

NS

State of Software
Security 2024

Addressing the
Threat of Security. Dept

new flaws introduced by application age

the "honeymoon phase" of applications where fewer
flaws are introduced

2 3

age of application in (years)

organizations are
drowning in security debt

JAORS) 45%

of organizations of organizations

have security have critical
debt security debt

2 out of 10

applications show an

average monthly fix rate
that exceeds

ten percent of all security
flaws.

teams

AWSs

5
o

| Ak
(4 I
2

i N A g A
ik \ “’& -~ b

¢

‘why software
security is hard

security knowledge gaps
increased application complexity
Incomplete view of risk

evolving threat landscape

Let’s add the
exciting
potential of
large language
models that
can write code!

R - 2 .
Wl
=
& L
' A8 :)

b . an

4 Lt

- [

f K ! ¥
(550 %8 PRegh o 'y
| -'"}]

DU o LR T T

il .l 3
& v
sl e
g . By |
L

-"i:'.;.{lr.".. L .
= | TRAINED MY MODEL
ON ALL THE WORLDS CODE! {EXP

lf‘

o)
«J 5,&}
. _

,.

“YOU REMOVED THE

LOITABLE STUFF IIIEII'I'?I

T T

\ R 57T . =y

L MRS
‘r,. d v

i "J

[
& 4
£
ks @ .
._* - ..

» ,F:‘-
e -

—

Developer GenAl use
right now

Generating code

Understanding code/Code review
Remediating defects

Translating programming languages
Creating and maintaining unit tests

Writing documentation

Emerging dev
uses for GenAl

Learning about the code base

Searching for answers to avoid
reinventing the wheel

Reading log files to find a root
cause

Creating and running
functional & non-functional

tests

Remediating security
vulnerabilities

Large Language Models

Training
‘” e Data Set 0
I 41%
Public GitHub .
Code Repositories ﬂ 412/2)32 igi’lclaoitl F:(T:Vl;ﬁEd
(‘ Generator \ _ Y,
\ ~ N f \ security vulnerabilities.
Open-Source | —
Projects ﬁ La rge
{ User Prompt }% ChatGPT \ > — < >_> Language |—— (User Result]
- Documentation _) MOdEI
and -—
C t \
L omments) /
\9 Bard —
. Y
Thirds Party Code
e (License Risk) —-/

Large corpus of data

that includes open
web content.

VERACODE

Out of the 435 Copilot generated

code snippets found in repos
36% contain security

2%

52% of ChatGPTs answers were

Developers using LLMs were

more likely to write insecure

Of 1689 generated programs 41% of code.

Copilot produced programs incorrect.

They were more confident their

3 Oct 2023

10.02059v1 [cs.SE)

3

arXiv:2.

weaknesses, across 6
programming languages

Security Weaknesses of Copilot Generated Code in GitHub
Yujia Fu Peng Liang Amjed Tahir

School of

‘Wahan, Chi

Vs Unvrsty

yolia_ fu@whueduen liangp@whu.eduen Pt aland

b @maseyaces

Zengyang Li Mojtaba Shahin Jiaxin Yu

et hia Norea Uivery

‘Wahan, Chin Mibomne s

4 Teokoges
Wuhan University
‘Waban, China

ABSTRACT

suggested code. It o shows that pracitioners should cultivate

Langusge Models (LLA), to generate functional and complte
code. Whie such ool arebecoming populr and widly vaiable

€CS CONCEPTS

Threore. s iporat o s he ey o e gneried
s s sty s e eenly
<ode generation tools nclocing.

penersed code reqre frther nvestgation,<specly th scurty

CWEs, Gitb

Tothisend

i L A g oS

i gyt e by G Copiot e e o

e
el of A oo oo 7 3. N Yok .U,

g e s of ey s e qely e
than crafed scenaios) To this end.we identi-

avalable projcts.

hese code sippes.Theresuls show that (1) 3.5 ofCopllot g

ments), code (such a» function signatues, expressions, varisble
s, tc) or Aferwiing

which C

mcm 16 Dec 2021

Ijecton C

L

o evolve,moreand more programming angages began o spert
et programming making utomated cod generation technclogy

o e

e Lo Lngige s LN L e dep g
o i o e ot oy wi powel gt
ndetanding cpablis at camb ke ks ch

arXiv:2108.09293v3

contained vulnerabilities

Asleep at the Keyboard? Assessing the
Security of GitHub Copilot’s Code Contributions

Hammond Pearce Baleegh Abmad Benjamin Tan Brendan Dolan-Gavitt _ Ramesh Karri
purtment of ESE.

Brooklyn, NY, USA Brooklyn, NY, USA. _ Calgary, Alberta, CA Brooklyn, NY, USA. Brooklyn, NY, USA

@ nyucdu

ingusge
modd trained over open-source GitHuh code. Nwzvzr, e P
s —and s,

the securty of ML generated code
As Github Copilot s the lugest and

alenceof insecure generated code? What rors ot he

ot it Copl o proce, 4 - e o e
ez code. This rises
Contihaions. n thic

e sysmaial xprimen il Copio ein m..gm
o these qu sarios for Capilo i

compce and by i the

As our sknesses,
¢ Sk Colorcompiioe o st of MITREs Comron

‘Weskness Enumeratons (CWES), from their “2021 CWE

(W

Top 25 Most Weaknesses” (4] list. This

iy o indicat th

e v e s Coplot o e,
prodacing 1689 prog oty
0% o e vt
e TGty Ardl el A1, xde
cocraion Common Weaknes Enumeratons (CWE
1. InTRopuCTION
Withincreasing pressure on software developers (0 produce
Iy, there

for matural anguage procesing (NLP) are tmined o vist

'AY' documentation recommends that one uses “Copilot
ot vith singproce td eurity ol 5 el b
you o judgment’. Ou wok stemps o chrcicrae he
tendeny of Copls o produs e code,giin s
phodgriel Sepsdnpiinde e 14

b da e e)
. its propensity for genera
eaknesen 1 the CWE top 25 gven
possible; (2) diversity
of prompt s response o the contet for & partculr scenario
(SQL njecion), and (3) divrsity of domain, s response to
the domain,

programmers wite code. In June 2021, Gitkub rleased

For diversity of weaknes, we construe thre differet sce-

‘Allvough prir research has evalvated the funcionatty of €

neruied by langusge. models (3], (2, ther is o
e y languag 0. 2l ine

ish 10 avoid when using

avard MIR0LE35 Kot sered . by Ofce of e

Rekach vt # MO 141090 R Ko & o s o by
RVURYOAD €5,

Fir Study the secuiy of code gencrated by C
vhe 8 el o i 1 e S ooty e

arXiv:2211.03622v3 [cs.CR] 18 Dec 2023

code was secure.

Do Users Write More Insecure Code with Al Assistants?

Neil Perry’ Megha Srivastava'
Stanford Usiversity Stanford Usiversity

ABSTRACT

Cumar Dan Bonel
Stanford University (UC Stanford University

sks of A asssaats i the conext of how developers choose to

eyl and can

To produce sccure code in b exvironment,rising sgnifesat

security misaes.

o folve vty of secuty relted tske, Oversl, we fnd hat

ks o dotis, v designed and conducted a comprehensive

programming an

a by thuee

10 be overconfident sboutsecuriy lawsintheir code To botier

+ RQI: Do userswrie more nsecure code when gvensceess

to'build an our swork at thislnk.

€CS CONCEPTS
 Security and pivacy - Human and socetal aspects of se-
curity and privacy:

KEYWORDS

+ ROS:How do scr language andbehavior wnen teracting
ol an Al sl e e o ey el

Partcpantswithaceess 1o an AL ssstant weoe nsecure ol
fo st o w.mn..m. acees o n Al sitan for
four 0 ks, W e usrs” sesurkty
uteomes it el cmvllin o 3 crs g poor

bl secunty

St status,and o] tha srs i sceens 2 Al sant
spcaly produced Lss secue cod (Scton 4 To make malters

el bary.

Vi Ve e of he

2 ACH S8

€08 25, Nowmber 26 e S,

1 INTRODUCTION

We o condacted an i depth anlyss o the diferat ayspar
clpotsteracted with th Al st such a il heper
funetions i heiing rompt o ffing aodl et We

‘ning toos wit the poteatia to owe the barrir of enty fox
25 Thes s

on decaations 1o s, and b the AL Asssant s n writing

Whilerecent werk

iicated Finally,partc-

produce scu

iy mistakes (7],

10 clarly expess your prompss and sppeopriatly rephrse ther.

cudewilh the AT

ssistant modelsbutls the vaviety of ways uses may choose o

arXiv:2308.02312v3 [cs.SE] 10 Aug 2023

Developers preferred them 35%

of the time yet 77% of those
answers were wrong

Who Answers It Better? An In-Depth Analysis of ChatGPT and
Stack Overflow Answers to Software Engineering Ques

Samia Kabir David N. Udo-Imeh
Purdue University
West Lafayete, USA
Kabirs@purduc edu dudoimeh@purducedu
Bonan Kou Tianyi Zhang
P Purduc Universty
Wes Laayette, USA West Lfayette, USA
Koub@purduc.edu tianyi@purduc edu

1 INTRODUCTION

ContGPTspop epis, i (3.7, 6] A vast oty

T communty. 52,5
263 o seck bl sl

i,
G s o 17 quesins from Stck Ovslow (60). We . rt.
e he corectns, oy, compehendvees, od e The ergeceof Lage Loguage Nodels (LM s demre

v gt sy and & e study o ain ghts intothe o software devlopes, Recent tics show ht programmers
Hinguistc and man aspects of ChtGP " newere Ou cxamina. e AL toos such 1 Gitiub Capilt 7] fr aste exporation

sponses 39.34% of the time due ton [6,55, 1]
Tor and provi 7 ol anguage b propeled

ol scurse e e B e e o ok Gl e
Popalaity ofoer model s caegiey. CRatGET'scapcity
CCS CONCEPTS s 2 Vs soessiont. ooy ek o

Eumpisical sdics llcontribted o s popuary. Comseguently, ChatGET's pop-

stack overtow, g8, arge language model, chatgpt
ACM Refeence Format Google) o widly vaed QA pstforms e, Stack Ovrflow)

o ke o

e Fomuooo i whis
hen Lt m.w .mm.m
Sk o e st bt

o

gencrated by ChntGPT (16

VULNERABILITIES FOUND IN THE CHATGPT-GENERATED PYTHON
CODES

CWE Name

CWE

Vuln.
Top-25 Rank Samples

CWE-312 Cleartext Storage of Sensitive Information
CWE-798 Use of Hard-coded Credentials
CWE-208 Observable Timing Discrepancy
CWE-215 Insertion of Sensitive Information Into
Debugging Code

CWE-338 Use of Cryptographically Weak Random
Generator

CWE-79 Cross-site Scripting

CWE-209 Generation of Error Message Containing
Sensitive Information

CWE-287 Improper Authentication

CWE-295 Improper Certificate Validation
CWE-918 Server-Side Request Forgery

18

13

19

14

Led L LA

[

Generate and Pray: Using SALLM to Evaluate the
Security of LLM Generated Code

Mohammed Latif Siddig, Joanna C. 5. Santos, Sajith Devareddy and Anna Muller
Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, IN USA 46556

Abstra the growing popularity of Large Language Mod-
els (LLMs) in software engineers’ daily practices, it Is importa

serated by these tools
o free of vulnerabilities. Although
pers to be more productive, prior empirical
i LLMs can gencrate insecure code. There
are two contributing factors to the insecure code generation.
First, existing datasets used to evaluate LLMs do not adequately
represent genuine software engineering tasks sensitive to security
e ey e el o Competf pragaming e

real-world applicati

e code produced is ntegrated ito larger codebases, Introduc.
ond,cxsting evaluaion metris

of the generated

s considerations. Therefor, i this

Ebiils o gencrate scure code syt
ias theee major components: a novel dataset of securi
Python prompts, configurable assessment technigues to evaluate
the generated code, and novel metrics to evaluate the models
performance from the perspective of secure code generation.

Index Terms—security evaluation, large language models, pre-
trained transformer model, metri

L INtRODUC

i

A code LLM is a Large Language Model (LLM) that has been
trained on a large dataset consisting of both fext and code 1]
As aresult, code LLMs can generate code written in a specific
programming language from a given prompt. These prompis
provide a high-level specification of 2 developer's intent [2]

and can include single/multi-line code comments, code ex-
pressions (g, a function definition), text, or a combination
of these, efe. Given a prompt as input, an LLM generates
tokens, one by one, until it reaches a stop sequence (ie., &
pre-configured sequence of tokens) or the maximum number
of tokens is resched.

LLM-based source code generation tools are increasingly
being used by developers in order to reduce software d
velopment efforts [3]. A recent survey with 500 US-based
developers who work for large-sized companies showed that
92% of them are using LLMs to generate code for work and
personal use (4], Part of this fast widespread adoption is due
{0 the increased productivity perceived by developers; LLMs
help them to automate repetitive tasks so that they can focus
on higher-level challenging tasks [3]

Although LLM-based code generation techniques may pro-
duce functionally cormect code, prior works showed that
they can also generate code with vulnerabilities and security
smells [S-8]. A prior study has also demonstrated that
training sets commonly used to train and/or fine-tune LLMs
contain harmful coding patterns, which leak to the generated
code [9]. Moreover, a recent study [6] with 47 participants
showed that individuals who used the codex-davinci-002
Kootk eql i marlrssecwowcompure o oen o
did not use it. Even worse, participants who used the LL
were more likely to believe that their code was secure, e
their peers who did not use the LLM to write code.

There are two major factors contributing to this unsafe code
gencration. First, code LLMs arc evaluated using benchmarks,
which do not include constructs to evaluate the security of
the generated code [10], [11]. Second, existing evaluation
metrics (e.g.. pass@k [12], CodeBLEU [13], erc.) assess models’
performance with respect to their ability to produce funcrion

ally correct code while ignoring security concerns. Therefore,
the performance reported for these models overly focuses on
improving the precision of the generated code with respect to
passing the functional test cases of these benchmarks without
evaluating the security of the produced code.

R St i LUt ol
the need for secure code generation is vital. Generated code
kg VAL sk G vkl el
developers, affecting the software systeen’s reliability. Thus, to
Fulfll this need, this paper describes a framework (o perform
Sccurity Assessement of LLMs (SALLM). Our framework
includes a (D a manually curated dataset of prompts from
a variety of sources tha represent typical engineers’ intent;
@ an automated approach that relies on static and dynamic
analysis to automatically evaluate the security of LLM gen-
exated Python code; and () two novel metrics (securityek
and vulnerabili tyék) that measure to what extent an LLM
is capable of generating secure code.

The contributions of this paper arc:
- A novel framework 1o systematically and automatically

evaluate the security of LLM generated eode;
- A publicly available dataset of Python prompts';

¥The dataset will be made public on GitHub upon sceeprance.

Implications of LLM
code generation

Code reuse goes down
Code velocity goes up

Vulnerability density
similar

Increased Vulnerability
Velocity

How can we apply Al to the problem of
insecure code, but in a more accurate
and trustworthy manner?

19

We need a faster test and fix workflow

Ticket

Manual Fix ()

Recommend Fix

| Training data set: Java XSS

public void doGet(HttpServletRequest req, HttpServletResponse resp) {
String name = |[reg.getParameter("name");
String[] array = new Stringfloj;
array[0] = name;

PrintWriter writer = resp.getWriter();
writer.println(“Hello “ + array[0]); -« Cross-site scripting (CWE 80)

public void doGet(HttpServletReqguest req, HttpServletResponse resp) {
String name = reg.getParameter("name");
String[] array = new String[10];
array[0] = name;

PrintWriter writer = resp.getWriter();

writer.println(“Hello “ + StringEscapeUtils.escapeHtml4(array[0]));

Curated Dataset |

[User Prompt

Fix LLM

Fix Approach

Code Provenance Coverage all that
Assurance matter

Proprietary
Data

Fix

Suggestions

Supervised
Learning

[User Result]

VERACODE

Recommendations for Al and code security

Consider the implementation details before leveraging Al for developing
and/or securing code

* What does the ML model use for training data?

Is that training data trustworthy/vetted?

Are there licensing issues with generated code?

Is any of my intellectual property being leaked?

How accurate are the generated fixes?

Be aware of human biases that trick us into feeling overly confident
about the correctness of Al-generated content

Data Poisoning

Recursive Learning

Propagation of
Deprecated Practices

Other
Risks to

GenAl
Code

IP Infringement

______________ Bias & Fairness

Hallucinated &
Squatted Packages

VERAC

JE

GenAl in dev is a powerful tool that
requires the same level of security
scrutiny and best practices as any
other aspect of software
development

Include security considerations in
GenAl prompts

Automate as much of security
process as possible, including
automated fixing

Chris Wysopal
Co-founder & CTO Veracode
@weldpond

