
演讲人：李中权 时间：2024.08.24

Whoami

Senior security researcher from Dawn Security Lab of JD.com

• Focusing on bug hunting and fuzzing in Android, IoT, and Apple products

• Blog: https://imlzq.com

• Security Lab of JD.com

• Found 200+ CVEs in Google, Apple, Samsung, Huawei, etc

• Members consisting of previous Pwn2Own and DEFCON winnners

• Pwnie Award 2022 winner for best privilege escalation – Mystique

• https://twitter.com/dawnseclab

• https://dawnslab.jd.com

About Dawn Security Lab

https://twitter.com/dawnseclab
https://dawnslab.jd.com/

Why I Switched from Android to Apple for Vulnerability Research

1 Better vulnerability disclosure policy

2 Higher bug bounties

3 I built a system using AFL + Unicorn to simulate and fuzz Android TAs.

By building a custom syscall API, it can be adapted for macOS/iOS

https://imlzq.com/android/fuzzing/unicorn/tee/2024/05/29/Dive-Into-Android-TA-BugHunting-And-Fuzzing.html

https://imlzq.com/android/fuzzing/unicorn/tee/2024/05/29/Dive-Into-Android-TA-BugHunting-And-Fuzzing.html

Goals and Findings

1. Analyze and exploit macOS
userland vulnerabilities to identify
fuzzing targets

2. Bypass all user space security
mechanisms to gain full control of
the computer

exploitable logic vulnerabilities

have been discovered since July 2023

Content Adjustment Due to Unpatched Vulnerabilities

1. Security Protections on macOS

2. Transforming a Traditionally Useless Bug into a Sandbox Escape

3. A Permission Granting Mechanism on macOS

4. Everything you need to know about AppData TCC

5. Summary

PART ONE01

System Integrity Protection: Rootless

https://support.apple.com/en-us/102149

https://support.apple.com/en-us/102149

System Integrity Protection: Rootless

https://opensource.apple.com/source/xnu/xnu-7195.81.3/bsd/sys/csr.h.auto.html

Details: https://www.microsoft.com/en-us/security/blog/2021/10/28/microsoft-finds-
new-macos-vulnerability-shrootless-that-could-bypass-system-integrity-protection/

TCC

Works similarly to Android permissions

Dynamically applied when needed

General TCC bypass vulnerability is more valuable than userland root LPE

Targets

Memory corruption
vulnerabilities

•Safari, Messages, Mail,

FaceTime, Pictures,

Video/Audio, PDF, etc.

Download and launch an
untrusted app

Gatekeeper Bypass

Malicious documents

SBX from Office

Remote Attack Surfaces on macOS

Memory corruption
vulnerabilities

•Safari, Messages, Mail,

FaceTime, Pictures,

Video/Audio, PDF, etc.

Download and launch an
untrusted app

Gatekeeper Bypass

Malicious documents

SBX from Office

Remote Attack Surfaces on macOS

PART TWO02

Exploit sandboxd

or sandbox profiles

Exploit XPC services

or syscalls

Launch a fully controlled

non-sandboxed app

App Sandbox Escape on macOS

Exploit sandboxd

or sandbox profiles

Exploit XPC services

or syscalls

Launch a fully controlled

non-sandboxed app

App Sandbox Escape on macOS

The simplest app structure :

App on macOS

macOS supports different executable file formats depending on the chip architecture

Intel Chips
Shell scripts

x86_64 binaries

ARM Chips (Apple Silicon)

Supports ARM binaries by default

Supports x86_64 binaries and shell scripts with Rosetta installed

App on macOS

macOS supports different executable file formats depending on the chip architecture

Intel Chips
Shell scripts

x86_64 binaries

ARM Chips (Apple Silicon)

Supports ARM binaries by default

Supports x86_64 binaries and shell scripts with Rosetta installed

App on macOS

Files modified by sandboxed apps

are assigned the Quarantine

attribute

Prevents execution

if without user consent

Security Protection : Quarantine

Flags

Time
Stamp

Modifier

UUID

Quarantine Protection on macOS

Quarantine Protection on macOS

Flags

Time
Stamp

Modifier

UUID

Download a file with Safari,

the file will be tagged with Quarantine

attribute

Quarantine Protection on macOS ：Untrusted App

 Gatekeeper blocks

its launch

Quarantine Protection on macOS ：Untrusted App

• We need to go to System Settings to allow the operation

• Admin password needed

https://support.apple.com/en-us/102445

Quarantine Protection on macOS ：Untrusted App

https://support.apple.com/en-us/102445

01

Click Open Anyway

02

Click Open once again

03

The app finally launches, syspolicyd adds its quarantine flags with 0x40

Quarantine Protection on macOS ：Untrusted App

Launch the user-permitted app,

syspolicyd will not prevent its launch because the

quarantine flags contain 0x40

Quarantine Protection on macOS

• Only a single additional click is required to launch the notarized app

Quarantine Protection on macOS ：Trusted App

• If the user downloads an untrusted app, launching the app requires multiple clicks and the admin password.

• If the app has been notarized, an additional click is still needed to launch the app

Nice security protection effectively mitigate the 1-Click RCE attack surface

Quarantine Protection on macOS ：Summary

Use an app folder

that does not set the Quarantine attribute to wrap

the executable file

YES

Can We Launch an Executable File Without Modifying Its Quarantine Flags?

• If there is a vulnerability that allows us to create an app

folder without quarantine attribute, can we use it to bypass

the sandbox?

Can We Launch an Executable File Without Modifying Its Quarantine Flags?

SBX with an Arbitrary Folder Creation Vulnerability

Launchable Unlaunchable

Quarantine Flag != 0086

02

Quarantine Flag == 0086

Why？

Any write operation to a file will be
assigned the 0086 flag

• The system will use the strictest policies to
handle this file

The design of Quarantine
incorporates the concept of

whether the user has permitted
this operation

Not authorized Authorized

Any write operation to a file will be
assigned a flag other than 0086

• E.G : 0081/0082/0083

• The system will handle it in a softer way

My Hypothesis

https://github.com/apple-oss-distributions/WebKit/blob/WebKit-
7618.2.12.11.6/Source/WebCore/PAL/pal/spi/mac/QuarantineSPI.h

 Validating My Hypothesis: From a Code Perspective

https://github.com/apple-oss-distributions/WebKit/blob/WebKit-7618.2.12.11.6/Source/WebCore/PAL/pal/spi/mac/QuarantineSPI.h

https://opensource.apple.com/source/WebKit2/WebKit2-
7610.4.3.0.3/UIProcess/Cocoa/WKShareSheet.mm.auto.html

Validating My Hypothesis: From a Code Perspective

https://opensource.apple.com/source/WebKit2/WebKit2-7610.4.3.0.3/UIProcess/Cocoa/WKShareSheet.mm.auto.html

Download the firmware:
• https://ipsw.me/
• https://developer.apple.com/download/

Extract Quarantine.kext

https://ipsw.me/
https://developer.apple.com/download/

Extract Quarantine.kext

• A sandboxed app is not allowed to modify files' Quarantine attribute

Process to Generate the Quarantine flag

If the input flags do not contain 0x40 and the lowest two
bits are non-zero, the 0x80 flag will be added

Process to Generate the Quarantine flag

• 0081 : Download

• 0082 : Sandbox

• 0083 : Sandbox + Download

• 0086 : Sandbox + Hard

Analyze Quarantine.kext

01 03

02

Analyze Quarantine.kext

01

Identify a vulnerability that allows the

creation of an app folder without the

quarantine attribute

02

Discover a vulnerability or utilize a

feature to create an executable file

with a quarantine flag other than

0086

SBX Through Launching a Non-Sandboxed App

https://support.apple.com/en-us/HT214036
Impact : macOS 10.15 – 14.0

CVE-2023-42947: Creating an App Folder Without the Quarantine Attribute

https://support.apple.com/en-us/HT214036

Application Container

~/Library/Container/{App_Bundle_ID}

Group Container

~/Library/Group Container/{Group_ID}

CVE-2023-42947: Creating an App Folder Without the Quarantine Attribute

https://developer.apple.com/documentation/foundation/
nsfilemanager/1412643-containerurlforsecurityapplicati

Below macOS 15, the group containers of third-party apps
are not protected and behave differently compared to iOS

Group Container: The differences between Mac and iOS

01.
iOS: Upon app launch, Container Manager automatically creates the corresponding group containers and restricts
access based on teamID

02.
macOS: Container Manager does not automatically create group containers for an app upon its
first launch

Group Container : Below 14.0

• Container Manager is the core management component for app sandboxing, it has FDA access and also

faces some sandbox restrictions

• There is a path traversal vulnerability in group container folder creation process

• This API can also be triggered via XPC

CVE-2023-42947: Path Traversal

App’s group containers are now automatically created upon the app's first launch

• The API only returns the URL and does not perform

folder creation

CVE-2023-42947: Patch

01

Identify a vulnerability that allows the

creation of an app folder without the

quarantine attribute

02

Discover a vulnerability or utilize a

feature to create an executable file

with a quarantine flag other than

0086

SBX Through Launching a Non-Sandboxed App

0082

Privilege Entitlement

Abuse Apple Event

Abuse User-Selected

Abuse Clipboard

0082 Routes

• As long as the app declares the entitlement, any

operation on files will be marked as 0082 quarantine

flag

• Regardless of whether the app actually has read-

write permissions for the Downloads folder

Route 1 : Privilege Entitlement

Examples

Telegram

Parallels Desktop

Apple Mail

WPS Office Bluetooth File Exchange

Apple Messages

WhatsApp

WeChat

Route 1 : Examples

SBX for Apple Mail

Microsoft Word and many other applications do not declare the entitlement

Route 1 : Limitations

If Terminal attempts to open

with TextEdit, it will be denied

• flag.txt is a protected file

• Neither the requesting Terminal nor the handling

TextEdit has access to it

What is User-Selected Feature

• However, if we double-click on `~/Documents/flag.txt` in Finder, TextEdit will be able to load the file correctly

• This is because the user explicitly wants to use TextEdit to open `flag.txt`, so the OS will fully grant file access

to TextEdit

What is User-Selected Feature

• From a system design perspective, User-Selected / User-Approved feature is one of the most powerful

functions on mac

• Only Root and SIP can limit its behavior

• The design of Quarantine incorporates the concept of whether the user has permitted this operation

What is User-Selected Feature

Before modification

After modification

The answer is

If an action is approved by the user, it will not be marked

with

Give It a Try

Double click

Any subsequent file
 operations performed

by Word

Receive a
document

Word gains full control
over the document

Quarantine flag:
0082

Route 2: Receiving a File and Choosing Word to Handle the Document

1. Inject a payload into the received document

2. Set the previously created non-sandboxed app's executable file as a symbolic link pointing to this modified

document

Route 2: Microsoft Word SBX under macOS 14.0

Text Here

Title

Why the Exploit Failed on macOS 14?

macOS 10.15 - macOS 13.5

SBX : CVE-2023-42947 + Router 2

macOS 14.0

• Because macOS 14 introduced a new TCC :

• This was the first time I truly experienced the impact of

security protections on exploit development

Why the Exploit Failed on macOS 14?

• Below macOS 14, any non-sandboxed process could

access the private containers of any third-party app,

such as WhatsApp's and Telegram's

New TCC on macOS 14 : AppData

• If the executable file is a shell script, /bin/sh would execute this script

does not have access to the private

container folder of WeChat, which would prevent the

script from launching

Impact of AppData TCC on Exploit

• Why can an executable file be accessed and launched if it is a regular file but not when it is a symbolic link?

• The file hello is in the HelloMac’s private container folder, so why can /bin/sh access it even it is protected by

AppData TCC?

Regular File vs Symbolic link

https://support.apple.com/HT214088

https://support.apple.com/HT214086

https://support.apple.com/HT214084

https://support.apple.com/HT214081

If a directory ends with “.app”, all apps can directly access its contents, regardless of whether the directory is
protected by TCC

Vulnerability : NO CVE

https://support.apple.com/HT214088
https://support.apple.com/HT214086
https://support.apple.com/HT214084
https://support.apple.com/HT214081

• We cannot use the vulnerability to access files in some sensitive directories now

• But we can still launch apps from protected directories

• It seems that Apple wants to keep the exception for launching apps

NO CVE：Patch

• User-Selected is a crucial feature

• macOS should ensure that malicious applications cannot emulate click events or trigger the permission-granting

mechanism without user interaction

Route 3 : Abuse OpenFile Apple Event

Using `

wil l make the specified app open

hello.txt

Subsequent operations on the input file will

be treated as user-approved and will tag

the file with the quarantine flag

instead of 0086

Once an app implements the

and interfaces, it can freely

handle the input files

Route 3 : Abuse OpenFile Apple Event

Macro.docm

Title

• This exploit opens a new UI to handle a document, making the attack noticeable to the user, which is not ideal

for weaponization

• If an application has not implemented the and interfaces, this method will not work

Route 3 : Limitations

The Flaw in Clipboard on macOS

The Clipboard component
on macOS

does not protected

Every process can access
the Universal Clipboard,

including sandboxed apps

The copy operation on any
file will share the file

access with other
processes

视频、演示攻击，

Title

• The Clipboard not only breaks the sandbox restrictions but also allows us to use macOS as a stepping stone

to compromise the user's iOS device

• By abusing macOS‘s Handoff feature, we can monitor, hijack, and modify Clipboard data on iOS, such as

Cross-Device Clipboard Exploitation

iOS 0-Day?

macOS 0-Day

• When I prepared my PPT, iPhone Mirroring hadn't been released yet

• I'm not sure how it works, but the function sounds risky

• Taking over my Mac could mean taking over my iPhone silently

• The demand for macOS 0-day exploits may increase in the future

macOS 15 : iPhone Mirroring

Can we abuse the Clipboard component to help us achieve SBX?

Copy operations are mistakenly assumed to have user consent

YES

Route 4 : Abuse Clipboard to Modify Quarantine Flag

01

Identify a vulnerability that allows the

creation of an app folder without the

quarantine attribute

02

Discover a vulnerability or utilize a

feature to create an executable file

with a quarantine flag other than

0086

SBX Through Launching a Non-Sandboxed App

, an vulnerability is considered and cannot lead to any

exploitable outcome

• However, , by combining some exploit methods to modify the quarantine flag, such a seemingly

useless vulnerability can be transformed into a

• I first discovered the arbitrary folder creation vulnerability and spent two weeks figuring out how to exploit it.

 seemingly useless vulnerabilities, especially when analyzing a new OS

Section 2 : Conclusion

• I believe the system still contains many APIs that

allow for unauthorized folder creation

• Enjoy！

• Good luck for your bug hunting！

Good Luck

• Gergely Kalman (@gergely_kalman) found a SBX vulnerability: https://gergelykalman.com/CVE-2023-32364-a-

macOS-sandbox-escape-by-mounting.html

• :) The answer is: Yes, but we need to do a bit more if we want to achieve a general sandbox escape

Answering

Targets

PART THREE03

• Next, we need to discuss the newly introduced AppData TCC in macOS 14 as it hinders our previous exploit

• Before that, we first need to understand a crucial permission granting mechanism on macOS, MACL

（ ）

• AppData TCC is based on MACL

Section 3: A Permission Granting Mechanism on macOS

TextEdit doesn’t have
permission to access

`~/Documents/flag.txt`

Double-click flag.txt in
Finder

TextEdit gains access to
flag.txt

What does the MACL look like?

What happened

TextEdit doesn’t have
permission to access

`~/Documents/flag.txt`

Double-click flag.txt in
Finder

TextEdit gains access to
flag.txt

What does the MACL look like?

What happeneda permission granting mechanism
is at work here

• For example, use TCC.db to record who can access the Desktop

• Precisely controlling access to every single file is very costly

• More suitable for precise control over file access permissions

Two Ways to Limit File Access

Mark the file with some properties:

What does the MACL look like?

GuluBadFinder : CVE-2023-42850

01

Finder uses the default app

to open the file based on its

Uniform Type Identifier

02

macOS generates the MACL
a t t r i b u t e t o a l l o w t h e
default app to access the
file

03

Finder informs the app to
open the file

GuluBadFinder : CVE-2023-42850

Text Here

GuluBadFinder : CVE-2023-42850

• If we can replace the default file handler, we can trick Finder into automatically granting our application

access to any file when it opens the file

• E.g. :

- Safari/History.db

- Messages/chat.db

- etc.

GuluBadFinder : CVE-2023-42850

The app can register supported file types in in this way:

GuluBadFinder : CVE-2023-42850

https://github.com/Lord-Kamina/SwiftDefaultApps

The UTI of Database is dyn.ah62d4rv4ge80k2u

GuluBadFinder : CVE-2023-42850

https://github.com/Lord-Kamina/SwiftDefaultApps

Text Here

Title

• For these security protections on file:

• As long as a file is tagged with the MACL attribute, even if it is protected by TCC, a permitted app can still

access the file

The Role of MACL

Unpatched Vulnerabilities

5 Relevant Vulnerabilities Still Awaiting Patches

PART FOUR04

• When a sandboxed app launches, Secinitd requests ContainerManagerd to create a private container folder in

for this app based on its bundle ID

• For example:

Section 4: Everything you need to know about AppData TCC

• The Data folder is the actual private container folder for the app

• It has the MACL attribute, which contains information about all apps allowed to access it

Data Folder

• Secinitd registers the app container

• Apply MACL to the Data folder

How to generate MACL: Based on macOS 14.5

can access its private

container folder

can

access its private container folder

_applyPrivacyProtectionExceptionPolicy

WeType can access WeChat’s private container folder

Route 1 Demo : Info.plist of WeChat

Route 2 : DefaultSameTeamException

Secinitd owns “ ”

Analyze Sandbox.kext

Different MACL generation strategies based on the type

Analyze Sandbox.kext

Analyze Sandbox.kext

Different MACL generation strategies based on the type

Analyze Sandbox.kext

Different MACL generation strategies based on the type

Analyze Sandbox.kext

Different MACL generation strategies based on the type

• These MACL generation strategies are essentially similar, all involving SHA-256 hash calculations with some

differences in the details

Analyze Sandbox.kext

Secinitd grants launching sandboxed apps access to

specific folders

01

MACL can bypass all file TCC limitations

02

• If we can exploit AppData TCC, we can access arbitrary files with nearly FDA-level permissions, except we cannot modify

TCC.db

Abuse AppData TCC

GuluBadContainerManager : CVE-2023-42932

If is a symbolic link,

Secinitd will still update the destination folder’s MACL attribute with the launching app’s teamID

GuluBadContainerManager : CVE-2023-42932

GuluBadContainerManager : CVE-2023-42932 Patch

GuluBadContainerManager2 : CVE-2024-23215

The Container Manager first creates a temporary

folder at

GuluBadContainerManager2 : CVE-2024-23215

After creation, rename the folder to

GuluBadContainerManager2 : CVE-2024-23215

was not protected by TCC. Anyone could access it

• Race Condition vulnerability here

• Before renaming, we could replace the folder with a symbolic link

• As a result, the victim folder would be tagged with the malicious sandboxed app’s MACL attribute

GuluBadContainerManager2 : CVE-2024-23215

GuluBadContainerManager2 : CVE-2024-23215 PoC

moves to

• The folder is protected by TCC and we cannot access the temporary files any more

GuluBadContainerManager2 : CVE-2024-23215 Patch

GuluBadContainerManager3 : CVE-2024-27872

Secinitd requests

ContainerManagerd to create

the app container folder

ContainerManagerd creates

the container folder in

~/Library/Containers/

Secinitd requests Sandbox.kext

to update the MACL attribute

of the Data folder

01 0302

GuluBadContainerManager3 : CVE-2024-27872

Secinitd requests

ContainerManagerd to create

the app container folder

ContainerManagerd creates

the container folder in

~/Library/Containers/

Secinitd requests Sandbox.kext

to update the MACL attribute

of the Data folder

01 0302

GuluBadContainerManager3 : CVE-2024-27872

Data folder is not protected

Data folder is protected

Monitor Data folder creation;

if found, replace with a symbolic link

01

ContainerManagerd prevents the launch of the

malicious sandboxed app due to the patch for

02

• But Secinitd still requests Sandbox.kext to update the Data folder's MACL attribute

• As a result, the folder pointed to by the symbolic link has been erroneously assigned the MACL attribute

GuluBadContainerManager3 : PoC Step 1

GuluBadContainerManager3 : PoC Step 1

• Next time we launch the malicious sandboxed app, ContainerManagerd won't block it

• If not, the app cannot access the ~/Library/Safari folder even if it is on the folder's MACL trusted list

GuluBadContainerManager3 : PoC Step 2

GuluBadContainerManager3 : PoC

In macOS 15, the group containers of third-party apps are protected by AppData TCC too

Additionally, the “ ” folder is not writable

Hello Mac 15

Have You Identified an Attack Surface in AppData TCC?

AppData TCC

Protect the data of
third-party applications

Allows access only to trusted
applications

Does not provide developers
with an option to create a

blocklist

Purpose

Flaw

Effect

Have You Identified an Attack Surface in AppData TCC?

AllowList

Only apps on the allowlist are permitted

BlockList

Apps on the blocklist are not permitted

AllowList vs. BlockList

AllowList

Only apps on the allowlist are permitted

BlockList

Apps on the blocklist are not permitted

AllowList vs. BlockList

• If any trusted application has an , like the dylib hijacking vulnerability, the attacker can

download the old version, achieve LPE, and then access the sensitive files of the latest app

• A vulnerability that only affected specific versions has turned into

Have You Identified an Attack Surface in AppData TCC?

• The allowlist is a way to allow other processes to access the sandboxed app’s private container folder. Whatever the

configuration is, the sandboxed app itself can still access the private container folder

• Even if the allowlist works, it only compares the teamID in the allowlist. The vulnerable older version of the sandboxed

app has a valid teamID, so you cannot block its launch

Allowlist Can Not Block This Exploit

1. Achieve RCE on the victim's macOS, intending to escalate privileges or steal sensitive data, but discover that the

data is protected by AppData TCC

2. The protected data is guarded by a sandboxed app, and the latest version is secure with no LPE vulnerabilities

3. However, an older, vulnerable version can still be exploited. Download the vulnerable app to the victim's macOS to

achieve LPE

To Red Team

• If the app has an n-day vulnerability, developers can add the vulnerable app's cdhash to the blocklist

• These blocked older version apps cannot access the latest app's private container folder

To Apple : Suggestions

• If an application has had multiple privilege escalation vulnerabilities in its history, it is advisable not to grant

excessive TCC permissions to that application for security reasons

• Apple has introduced several security mechanisms, such as trustcache, to address these issues

• However, these mechanisms currently focus mainly on the security of Apple's apps and do not yet cover third-

party apps

TCCD Has a Similar Attack Surface

Targets

Unpatched Vulnerabilities

Over 30 Relevant Vulnerabilities Still Awaiting Patches

PART TWO05

• Finding an arbitrary folder creation vulnerability on macOS is equivalent to finding a sandbox escape

vulnerability

• MACL: A permission grant mechanism on macOS

• Everything you need to know about AppData TCC

• Abusing N-Day vulnerabilities in outdated versions of installed third-party apps to bypass TCC

Takeaways

 @Guluisacat 时间：2024.08.24

