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¢ Preliminaries
 DNNs are everywhere in our life!
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¢ Preliminaries

« Adversarial examples are from legitimate ones
adding small perturbations, but lead to :

esign(VgJ (0, xz,y))
“nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Original face  Perturbed face Target face
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Adv-glasses
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Explaining and Harnessing Adversarial Examples. ICLR 2015.
[ Sticker: A Stealthy Attack Method in the Physical World. TPAMI 2022.
ysical-World Attacks on Deep Learning Visual Classification . CVPR 2018.

Wei et al. Adv
Eykholt et al. Rob



¢ Preliminaries

 How to generate Adversarial examples?

Training a Network:
mein E(x,y)~p/ (x,¥; 6).

Generating Adversarial Example:

adv ,,.
e pedbi<e” (x4, 7:0).

* Untargeted attack: The victim model predicts the generated adversarial example into any incorrect
categories.
* Targeted attack: The victim model predicts the generated adversarial example into a specific

category.

N



¢ Preliminaries

*  White-box Attack: The attacker could access any information of victim model, e.g., architec

weights, gradients, efc.
* Black-box Attack: The attacker could access limited information of victim model.
* Score-based Attack: The attacker could obtain the prediction probability.
* Decision-based Attack: The attacker could obtain the prediction label.

: The adversarial examples generated on one model could mislead other

victim models.

X gdv
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¢ Preliminaries
Transfer-based Attacks

Ensemble-based Attack

——>» arithmetical operation forward propagation ~ ====3p backward propagation ]

Averaging the loss/logits,
reducing the variance ...

b Transtormaftion
¥ T()

\

T(:v?d”) Cross-entropy,_hinge loss,

resizing & padding, translation, scale, " o
& = regularizer, feature distance.

admix, adding noise ... W,

\ I / Advanced Objective Function

Surrogate model(s)

Gradient-based Attack

gradient, momentum, Nesterov accelerate gradient,

update

E variance tuning, enhanced momentum ...

C Generator _/ Robust model, weight pruning,
enhanced skip connection ...
Generation-based Attack Todel-related Attack

Wang et al. Towd gosting Adversarial Transferability on Image Classification: A Survey. To be released.
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¢ Gradient-based Attacks

* Gradient-based adversarial attacks are widely investigated:
» FGSM [Goodfellow et al., 2015]:
x4 = x + € - sign(V,J (x,y; 0))
» [-FGSM [Kurakin et al., 2018]:

X3 = X% + a - sign (Vo) (x84, y; 0))
» MI-FGSM [Dong et al., 2018]:

Vil (x? dv»y ?9) adv a
— + X = X
Jt+1 = UGt 1V (x2%, 0|1 t+1 t

> NI-FGSM [Lin et al., 2020]: X% = x2" + a - u - g,

Vo) (%7, ¥i0) ey _ a
IV (229, y;0) [, " °F

. Explaining and Harnessing Adversarial Examples. ICLR 2015.
Kurakin et a1 arial Examples in the Physical World. ICLR Workshop 2018.
Dong et al. Boos versarial Attacks with Momentum. CVPR 2018.
Lin et al. Nesterov A ated Gradient and Scale Invariance for Adversarial Attacks. ICLR 2020.

W+ - sign(ge+1)

W+ a - sign(ges1)

Jt+1 = UGt +



¢ Gradient-based Attacks
* Variance Tuning (VT)

Adversarial Standard
Example Generation Model Training
Input image x Parameters
Transferability Generalization

NI-FGSM finds that Nestorve Accelerated Gradient (NAG) that accelerates
the convergence of optimization process, also enhances the transferability.

We treat the iterative gradient-based adversarial attack as SGD optimization process,
in which at each iteration, the attacker always chooses the target model for update.

Wang et al. Enha\ﬁe Transferability of Adversarial Attacks through Variance Tuning. CVPR 2021.



¢ Gradient-based Attacks
* Variance Tuning (VT)

Gradient Variance. Given a classifier f with parameters 8 and loss function J(x, y; 0),
an arbitrary image x and upper bound €’ for the neighborhood, the gradient variance
can be defined as:

Ve-g’ (X) — ]E|x’—x|p<e’ [Vx’ ](xll J’; 6)] — Vx ](x, y; 0)

In practice, we approximate the gradient variance by sampling N examples in the
neighborhood of x:

I\
1 |
V(x) = NZ V.iJ(x,y:0) - Vo (x,y; 6),
=l

where xt = x + U[—(8 - €)%, (B - €)4].

At t-th iteration, we tune the gradient of x??” with the gradient variance at (t-1)-th
iteration to stabilize the update direction.

Wang et al. Enha\ﬁe Transferability of Adversarial Attacks through Variance Tuning. CVPR 2021.



¢ Gradient-based Attacks
* Variance Tuning (VT)

The variance tuning is generally applicable to all iterative gradient based attacks.

VM(N)L-EGSM VM(N)L-D(T,S)I-FGSM

VMI-FGSM: B=0 g=0 :
. M(N)I-FGSM Tnmsl;:z:::ations M(N)L-D(T,S)I-FGSM %

3 N ngdv](xt Y, 0) + 0 %

Jt+1 = U Gt | |ngdv](xgdv, y;6) + I, : S E,)
=¥ =

D(T,S)I-FGSM

adv _ ..adv .
Xir1 = x¢ 0 + a - sign(gesq)

Wang et al. Enha e Transferability of Adversarial Attacks through Variance Tuning. CVPR 2021.




¢ Gradient-based Attacks

* Variance Tuning (VT)

Attack Inc-v3  Inc-v4 IncRes-v2 Res-101  Inc-v3.,s3 Inc-v3.,.14 IncRes-v2.,..
MI-FGSM 100.0%
VMI-FGSM | 100.0%
NI-FGSM 100.0%*
VNI-FGSM | 100.0%*
MI-FGSM 99 7%
VMI-FGSM 99 g
NI-FGSM 100.0*
VNI-FGSM 09 9%
MI-FGSM 97.9%*
VMI-FGSM 97.9%
NI-FGSM
VNI-FGSM
MI-FGSM
VMI-FGSM
NI-FGSM
VNI-FGSM

IncRes-v2

Res-101

Table 1: The success rates (%) on seven models in the single model setting by various gradient-based iterative attacks. The
adversarial examples are crafted on Inc-v3, Inc-v4, IncRes-v2, and Res-101 respectively. * indicates the white-box model.

Wang et al. Enha e Transferability of Adversarial Attacks through Variance Tuning. CVPR 2021.
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¢ Input Transformation-based Attacks
* Similar to data augmentation in training, input transformation can enhan
diversity of image, thus boosting adversarial transferability.
» DIM [Xie et al., 2019]: Randomly resize the image and add padding for gradient calculation.
» TIM [Dong et al., 2019]: Accumulate the gradient on a set of translated images. To approximate

this process, TIM convolves the gradient of original image with a predefined kernel.
» SIM [Lin et al., 2020]: Accumulate the gradient on a set of scaled images.
» Admix [Wang et al., 2021]: Mixup the image with the images from other categories for gradient

calculation.

» SSA [Long et al., 2022]: Add noise and randomly mask the elements in the frequency domain to

generate several images for gradient calculation.

i Improving Transferability of Adversarial Examples with Input Diversity. CVPR 2019.
ing Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks. CVPR 2019.
Lin et al. ccelerated Gradient and Scale Invariance for Adversarial Attacks. ICLR 2020.
Wang et al. Adm ncing the Transferability of Adversarial Attacks. ICCV 2021.
Long et al. Frequenc ain Model Augmentation for Adversarial Attack. ECCV 2022.



¢ Input Transformation-based Attacks
* Structure Invariant Attack (SIA)

Assumption: The more diverse the transformed images are, the better transferability the adversarial

examples have.
1
LPIPS(x, %) = mz: z IIZ;ll,W — Zpwll2
[l hw

TIM DIM SIM SSA Admix

Transferability 574 776 793 806 83.6
LPIPS 025 043 048 054 0.73

Table 1: The transferability of TIM, DIM, SIM, Admix,
SSA, and similarity between 1,000 images and the trans-
formed images evaluated by LPIPS. The transferability is
evaluated by the attack success rate of Inception-v3 on the
adversarial examples generated on ResNet-18 .

variant Transformation for better Adversarial Transferability. ICCV 2023.




¢ Input Transformation-based Attacks
* Structure Invariant Attack (SIA)

Structure of Image: Given an image x, which 1s randomly split into sXs blocks, the relative relation between

each anchor point 1s the structure of image, where the anchor point is the center of the image block.

Raw Image Scale Block Scale

Figure 2: The randomly sampled raw image and its trans-
formed images by scaling on the full image and 3 x 3 blocks.

The structure of image depicts important semantic information for human recognition. Scaling
the image blocks with various factors does not change the structure of image so that the
generated image can be correctly recognized by humans as well as deep models.

variant Transformation for better Adversarial Transferability. ICCV 2023.



¢ Input Transformation-based Attacks
* Structure Invariant Attack (SIA)

To improve the diversity and maintain the semantic information, we apply various image transformations
to different image blocks, denoted as Structure Invariant Transformation (SIT).

Raw VShift HShift VFlip HFlip Rotate Scale ~ Add Noise  Resize Dropout

—
-r-w 7 o A i 3 B A
¢ . g | ; L

e The proposed transformation significantly improves the diversity but maintains the structure invariance.
e The proposed transformation can be integrated into existing gradient-based methods.
e The gradient is computed on several transformed images.

Wang et al. Stru\variant Transformation for better Adversarial Transferability. ICCV 2023.



¢ Input Transformation-based Attacks
* Structure Invariant Attack (SIA)

TIM B DIM N DEM E Admix EEN SSA HE SIA

100

(a) ResNet-18 Ne (¢) Inception-v3

(e) DenseN

Figure 3: Attack success rates (%) of eight deep models on the adversarial examples crafted on each model by TIM, DIM,
DEM, Admix, SSA, and SIA.

Wang et al. Stru variant Transformation for better Adversarial Transferability. ICCV 2023.
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¢ Model-related Attacks

* Modifying the surrogate model to boost adversarial transferability.

» Ghost Network [Li et al., 2020]: Densely add dropout layer and randomly scale the feature

passing the skip connection of ResNets.

» SGM [Wu et al., 2020]: Adopt more gradient from the skip connections instead of the residual

modules using a decay factor for backpropagation.

» LinBP [Guo et al., 2020]: Adopt constant value as the gradient of ReLU activation and modify the

gradient of residual modules to makes backpropagation more linear.

identity

Lietal Le nsferable Adversarial Examples via Ghost Networks. AAAI 2020.
Wau et al. Skip jons Matter: On the Transferability of Adversarial Examples Generated with ResNets. ICLR 2020.
Guo et al. Backprop Linearly Improves Transferability of Adversarial Examples. NeurIPS 2020.




¢ Model-related Attacks
* Backward Propagation Attack (BPA)

Backpropagation follows the chain rule:

»

\ ReLU(x) = max(0, x)

0 (x,y;6) _ 9](x,y;6) ﬁ 0i1(@) 02111 02
ox  0fia(z) 0z 0z Oy

Non-linear layers result in the truncation of gradients w.r.£. images.

i=k+1

> Rel U activation function

\ 4

dz; |0 otherwise

» Maxpooling layer 0.1-0219 14

0Zi11 {1 ifz; > 0

0.0-0.5 2.3 0.7

0Z;11 _ )1 ifz is the maximum value in the window
0 otherwise -0.4 0.9 1.0 -2.0

0z i
0.7 0.6 0.5 1.7
Wang et al. RethNhe Backward Propagation for Adversarial Transferability. Under review.




¢ Model-related Attacks
* Backward Propagation Attack (BPA)

Assumption: The truncation of gradient introduced by non-linear layers in the backward propagation

process decays the adversarial transferability.
» Randomly mask the gradient to introduce more truncation.

» Randomly replace the zeros in the gradient of ReLU or maxpooling layers with ones

—o— I-FGSM —o— MI-FGSM

= N

o o
\V] N
o t

Attack success rates (%)
Attack success rates (%)
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prob. prob. prob.
(a) Randomly mask the gradient (b) Recover the gradient of ReLLU (c) Recover the gradient of max-pooling

Wang et al. Reth he Backward Propagation for Adversarial Transferability. Under review.




¢ Model-related Attacks
* Backward Propagation Attack (BPA)

Recover the truncated gradient for better transferability:

» Replace the gradient of ReLU with that of SiLU

Ours
0z i+1 LinBP

3z, = 0(z;) (1 +2z; - (1— a(zi))) o

» Adopting the Softmax function to calculate the gradient within each

window w of the max-pooling:

[aZk+1] _ etozk'i’j
N tv
0z ijw Divew €

0.7 0.6 0.5 1.7

Wang et al. RethNhe Backward Propagation for Adversarial Transferability. Under review.



¢ Model-related Attacks
* Backward Propagation Attack (BPA)

Attacker Method Inc-v3 IncRes-v2 DenseNet MobileNet PNASNet SENet Inc-v3enss Inc-v3ensa IncRes-v2ens

N/A 16.34 1338 36.86 36.12 13.46 17.14 10.24 9.46 D2
SGM 23.68 19.82 51.66 55.44 2207 30.34 13:18 12,38 7.90
LinBP 2722 23.04 59.34 59.74 22.68 33.72 16.24 13.58 7.88
Ghost 17.74 13.68 42.36 41.06 1592 19.10 11.60 10.34 6.04
BPA 35.36 30.12 70.70 68.90 32.52 42.02 22.72 19.28 12.40

N/A 26.20 21.50 51.50 49.68 2292 30.12 16.22 14.58 9.00
SGM S0. 78 28.84 63.06 65.84 31.90 41.54 19.56 17.48 10.98
MI-FGSM LinBP  35.92 29.82 68.66 69.72 30.24 41.68 19.98 16.58 9.94
Ghost  29.76 23.68 57.28 56.10 25.00 34.76 17.10 14.76 9.50
BPA 47.58 41.22 80.54 79.40 44.70 54.28 32.06 25.98 17.46

N/A 42.68 36.86 68.82 66.68 40.78 46.34 27.36 24.20 17.18
SGM 50.04 44.28 1106 79.34 48.58 56.86 9222 2012 19.66

VMI-FGSM  LinBP  47.70 40.40 77.44 78.76 41.48 52.10 28.58 24.06 16.60
Ghost  47.82 41.42 75.98 73.40 44.84 52.78 30.84 2718 19.08
BPA 55.00 48.72 85.44 83.64 52.02 60.88 38.76 33.70 23.78

N/A 20:10 26.08 5802 59.10 27.60 39.16 15.12 12.30 7.86
SGM 35.64 32.34 65.20 1122 34.20 46.72 17.10 13.86 9.08
LinBP  37.36 34.24 71.98 72.84 3512 48.80 19.38 14.10 9.28
Ghost  30.06 26.50 60.52 61.74 28.68 40.46 14.84 12.54 7.90
BPA 47.62 43.50 81.74 80.88 47.88 60.64 27.94 20.64 14.76

N/A 35.78 29.58 60.46 64.70 25.66 34.18 20.64 17.30 11.44
SGM 4522 38.98 70.22 78.44 35.30 46.06 26.28 21.64 14.50
LinBP  48.48 41.90 7502 78.30 36.66 49.58 28.76 23.64 15.46
Ghost  36.44 28.62 61.12 66.80 24.90 33.98 20.58 16.84 10.82
BPA 51.36 44.70 76.24 79.66 39.38 50.00 32.10 26.44 18.20

Wang et al. Reth he Backward Propagation for Adversarial Transferability. Under review.
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¢ Advanced Objective Functions

* Several attacks disrupt the high-level features:

» FIA [Wang et al., 2021]: Adopt aggregate gradient to highlight important features:

S i o) (x © M3, ; 6)
KT T LT o (x O M)

» RPA [Zhang et al., 2022]: Instead of randomly masking the pixels, RPA randomly split the image

, M}, ~ Bernoulli(1 — p),L(x) = Z(Z’,ﬁ © fk(x))

into patches, which will be randomly masked for calculating the weight matrix.

» NAA [Zhang et al., 2022]: Adopt integrated gradients for neuron attribution:

0] x'+ = (x—x’),y;H —
A% = - 2 ) L(x) = ¥|8% O (fir(x) — fir (")

n=1 O0f% (x + = (x —x’))

Wang et al. mportance-aware Transferable Adversarial Attacks. ICCV 2021.
Zhang et al. Enh he Transferability of Adversarial Examples with Random Patch. IJCAI 2022.
Zhang et al. Improvi versarial Transferability via Neuron Attribution-based Attacks. CVPR 2022.



¢ Advanced Objective Functions
* Semantic and Abstract FEatures disRuption (SAFER)

DNNss usually focus more on high-frequency components (e.g., texture, edge)

—— Freq Mask 40-299
Freq Mask 140-299

—&— Freq Mask 240-299

—fp— MI-FGSM

Attack success rates (%)

Origin Image High-Freq Mask 40-299 High-Freq Mask 140-299 High-Freq Mask 240-299

emantic and Abstract Features for better Adversarial Transferability. Under review.



¢ Advanced Objective Functions
* Semantic and Abstract FEatures disRuption (SAFER)

NAA

Randomly perturbing the semantic and abstract features:

Xi j with the probability p

Blockmix: B(x,x") = { '

x; j with the probability 1 —p

Frequency Perturbation: FP(x) = D;(D(x + &) © M)

N

_ 1

XSAFER — FP(B(x,x')),Ax = z
n=1

1N Yo yi8) )y (5 © )

Wang et al. Dis!Nemantic and Abstract Features for better Adversarial Transferability. Under review.



¢ Advanced Objective Functions
* Semantic and Abstract FEatures disRuption (SAFER)

Attack  Inc-v3 Inc-v4 IncRes-v2 Res-152 VGG-16 Inc-v3.,s3  Inc-v3.,c1 IncRes-v2.,.

MIM  100.0*% 424 39.8 33.0 39.6 15.4 15.9

FIA 08.3% 83.3 80.1 72.4 71.4 43.3 43.6

Inc-v3 RPA 97.9% 84.1 82.4 77.7 75.7 44.8 45.0
NAA 97.0% 82.9 81.3 74.7 70.1 49.9 50.2

SAFER  98.7%  87.7 86.7 80.4 80.0 52.1 52.6

MIM 59.7 100.0%* 45.3 38.8 47.7 18.5 18.3
FIA 75.0 90.2% 70.4 65.2 65.5 394 39.2
RPA 79.1 92.8% 75.2 69.0 70.2 44.2 43.5
NAA 81.8 96.1°* 76.1 71.4 70.2 47.2 45.7
SAFER  86.9 97.6* 83.5 79.4 80.0 51.9 50.5

—
<

W LW N M
S SRSRET)

N — WO NO W

W W N N
oo 9o

MIM 52.6 47.8 44.9 99.5% 50.3 24.5 24.3
FIA 80.6 78.6 77.6 08.2% 75.9 529 48.6
RPA 81.4 80.1 80.2 98.0* 76.4 56.4 50.8
NAA 83.9 82.2 80.4 97.5% 78.7 59.5 56.3
SAFER  87.6 86.2 86.2 99.1%* 83.9 61.9 58.2

MIM 83.0 81.6 76.4 79.5 100.0* 76.6 73.2
FIA 95.7 96.7 94.3 94.2 100.0* 91.8 92.3
RPA 96.2 96.3 93.4 94.1 100.0%* 92.5 93.2
NAA 94.5 93.4 91.1 92.3 08.3% 91.1 90.3
SAFER  98.0 97.3 95.8 95.6 100.0%* 93.9 93.7

Wang et al. Dis emantic and Abstract Features for better Adversarial Transferability. Under review.
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¢ Further Discussion & Conclusion

TransferAttack: a benchmark containing more than 60 transfer-based attack methods

QTransferAttack Private ® Unwatch 1 ~

¥ main ~ ¥ 1branch ©0tags Go to file Add file ~ <> Code ~

Zhijin-Ge Update _init__.py 4bebd3e last week @ 260 commits
def
transferattack
.gitignore
ADME.md
log.md
main.py

main_ens.py

requirements.txt

= README.md

TransferAttack: A Benchmark for Adversarial
Transferability on Image Classification

Requirements

e Python >= 3.6

e timm >=
o scikit-optimize, matplotlib for iaa

e pytorch3d for odi

% Fork 4 - Yy Star 0

About

TransferAttack: A Benchmark for
Adversarial Transferablity on Image

Releases

Packages

Contributors 6

NN =Y )

Languages

® Python 99.6%

Suggested Workflows
Based on your tech stac|

The framework will be released soon!



¢ Further Discussion & Conclusion

[ ——>» arithmetical operation forward propagation =~ ====3p backward propagation ]

Ensemble-based Attack

L
=

<

K Generator /

Generation-based Attack

Averaging the loss/logits,
reducing the variance ...

Input Transformation-based Attack

TransferAttack: a benchmark that contains

more than 60 transfer-based attack methods ‘ER derives an object-aware weight
SIA rand el aitrix to disrupt significant features

ey -
blOCk Wh 7T T Advanced Objective Function

-.

<« VT tunes the gradient using the gradient - BPA recovers the truncated J

variance of previous iteration gradient of non-linear layers
Model-related Attack
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