
KConKCon
Breaking iOS Mitigation Jails to Achieve Your Own

Private Jailbreak

Min(Spark) Zheng @ Alibaba Mobile Security

ONLY AVAILABLE AT THE SCENE

iOS status

• Apple sold more than 1 billion iOS devices.
More than 380,000 registered iOS developers
in the U.S.

• It was reported that iOS is more secure than
Android due to its controlled distribution
channel and comprehensive apps review. E.g.,
FBI vs Apple.

• However, there are still potential risks for iOS
systems. We will share our private jailbreak
and show how to break the protection of iOS
system.

iOS System Architecture

Sandbox

Team ID

Entitlement

Kernel

KPP

Jailbreak!

ONLY AVAILABLE AT THE SCENE

iOS mitigations

Sandbox

Team ID

Entitlement

Kernel

KPP

Jailbreak!

You can not touch most of kernel interfaces unless you escape
the sandbox.

You can not execute or load any binary unless the bin has the
“platform-binary” team-id.

You can not create hid devices unless the bin has the
“com.apple.hid.manager.user-access-device” entitlement.

You can not control the kernel unless you have kernel bugs and
bypass kernel heap mitigations.

You can not patch the kernel unless you can bypass the kernel
patch protection.

Finally, you did it!

Sandbox and NSXPC

• iOS apps are in the sandbox and they are separated from each other.

• App can communicate with unsandboxed system services through
IPC (e.g., mach message, XPC, NSXPC).

• In this talk, we focus on NSXPC and discuss one IPC vulnerability we
found that can escape the sandbox.

APP

sandbox

XPC services

NSXPC
services

APP

sandbox

iOS 9.0 Jailbreak: CVE-2015-7037

• com.apple.PersistentURLTranslator.Gatekeeper

• This service has path traversal vulnerability that an app can mv folders
outside the sandbox with mobile privilege (used in Pangu9 for
jailbreak).

ONLY AVAILABLE AT THE SCENE

ONLY AVAILABLE AT THE SCENE

ONLY AVAILABLE AT THE SCENE

Heap spray through OOL msg

• Traditional xpc_dictionary heap
spray. Failed because the data was
freed before pc control.

• Asynchronous xpc_dictionary heap
spray. Unstable because the time
window is very small.

• SQL query heap spray. Low success
rate because of ASLR and memory
limit.

• Asynchronous OOL Msg heap
spray. Finally success!

ROP ROP ROP ROP
ROP ROP ROP ROP
ROP ROP ROP ROP
ROP ROP ROP ROP
ROP ROP ROP ROP
ROP ROP ROP ROP

PC

Memory

ONLY AVAILABLE AT THE SCENE

NEXT: User mode -> Kernel

iOS kernel overview

• Mach
- Kernel threads

- Inter-process communication

• BSD
- User ids, permissions

- Basic security policies

- System calls

• IOKit
- Drivers (e.g., graphic, keyboard)

Kernel: XNU

Mach

BSD

IOKit

User Mode

Entitlement

ONLY AVAILABLE AT THE SCENE

ONLY AVAILABLE AT THE SCENE

iOS 9.0 IOHIDFamily UAF

• OSSafeRelease() is not safe!

Fake device & vtable & ROP

R3=device1-0x3B4+4

R0 = Device1

R6=read_gadget

R6 = [R3, #0x3B4] = Device1 - 0x3B4 + 4 + 0X3B4 = Device1 + 4

Device1 + 4Device1

R6=write_gadget

Device1 + 8

R3=device1-0x3B4+8

R0 = Device2

R6 = [R3, #0x3B4] = Device1 - 0x3B4 + 8 + 0X3B4 = Device1 + 8

Device2

iOS 9.3 IOHIDDevice heap overflow

• There are three types of
report in IOHIDDevice:
Input, Output, Feature. But
no check for Input report.

• If Input report >
max(Output report, Feature
report), then trigger heap
overflow.

• By using this vulnerability,
the attacker can achieve
arbitrary length of heap
overflow in any kalloc zone.

iOS 9.3 Heap Overflow

Input, Output, Feature Report: if (Input > Output) then Overflow

32 32 32 32

160 32 32 32

32

32

Zone.32

Zone.32

Overflow

Leak Kslide Using Heap Feng Shui

• The first 8 bytes of the object is the vtable addr of UserClient. Comparing the

dynamic vtable address with the vtable in the kernelcache，the attacker can

figure out the kslide.

• kslide = 0xFFFFFFF022b9B450 – 0xFFFFFFF006F9B450 = 0x1BC00000

kalloc.4096 kalloc.4096 kalloc.4096

holder first_port userclient

0x40 0x100

read

Arbitrary Kernel Memory Read and Write

• The attacker first uses OSSerialize to create a ROP which invokes uuid_copy. In this way,

the attacker could copy the data at arbitrary address to the address at kernel_buffer_base +

0x48 and then use the first_port to get the data back to user mode.

• If the attacker reverses X0 and X1, he could get arbitrary kernel memory write ROP.

X0=[X0,#0x10]
= kernel_buffer_base+0x48
X1=address
X3=kernel_uuid_copy
BR X3

Arbitrary Kernel Memory Read and Write

• If the attacker calls IOConnectGetService(Client_port) method, the method will

invoke getMetaClass(),retain() and release() method of the Client.

• Therefore, the attacker can send a fake vtable data of AGXCommandQueue

UserClient to the kernel through the first_port and then use

IOConnectGetService() to trigger the ROP chain.

• After getting arbitrary kernel memory read and write, the next step is kernel

patch. The latest and public kernel patch technique could be referred to yalu

102.

Kernel patch for jailbreak

Patching security features of iOS in
order to jailbreak:

• Kernel_PMAP: to set kernel pages
RWX.

• Task_for_pid: to get kernel task
port.

• Setreuid: to get root.

• AMFI: to disable signature check.

• LwVM (Lightweight Volume
Manager): to remount the root file
system.

……

Kernel patch protection bypass

Apple introduced KPP in iOS 9 for its 64-bit devices. The feature aims to
prevent any attempt at kernel patching, by running code at the processor's
EL3 which even the kernel code (executing at EL1) cannot access.

For arm32:

• There is no KPP, we can patch the kernel text directly. (iOS 9.3.5 Phoenix JB)

For arm64:

• Timing attack. Before iPhone 7, KPP is not a real time check mechanism,
patching and restoring the kernel text in a short time window is ok.

• Patching data on heap is ok. But it is hard for us to patch LwVM.

• Page remapping with fake TTBR (used in yalu 102).

iOS jailbreak process

CodeSign

SandBox

TeamID

Entitlement

Userland

Kernel Patch

KPP

Heap Mitigation

IOKit/XNU

Kernel

Root

Break CodeSign

Remount RFS

Jailbreak Apps

Jailbreak

Jailbreak!

OverSky (aka Flying) Jailbreak for iOS 9.3.4/9.3.5 (0day at that time)
https://www.youtube.com/watch?v=GsPmG8-kMK8

https://www.youtube.com/watch?v=GsPmG8-kMK8

Conclusion

• To mitigate iOS potential threats, more and more mitigation
approaches are introduced by Apple. We conducted an in-depth
investigation on the current mitigation strategies to have a better
understanding of these protections and tried to find out their
weaknesses.

• Particularly, we will present how to break each specific mitigation
mechanism by exploiting corresponding vulnerabilities, and
construct a long exploit chain to achieve jailbreak.

• Following the technique details presented in our talk, it is possible
for anyone who interested to rewrite his own private iOS jailbreak.

Thank you!Thank you!

