Microarchitecture
Vulnerabilities

Past, Present and Future

Daniel Gruss (Graz University of Technology)
Anders Fogh (Intel Corporation)

Introduction

Daniel Gruss
Graz University of Technology

Anders Fogh
Intel

Daniel and Anders
do not always agree!!

Past — earliest days

Side Channels always existed

Past — earliest days

Side Channels always existed

First scientific observations in 1943

TEMPEST: A Signal Problem

The story of the discovery
of various compromising radiations
from ications and Comsec equip

impractical. Hydraulic techniques—to replace the
electrical—were tried and abandoned, and experiments
were made with different types of batteries and motor
generators, in attempts to lick the power.line problem.
None was very successful.

During this period, the business of discovering new
TEMPEST threats, or refining techniques and
instrumentation for detecting, recording, and analyzing
these signals, progressed more swiftly than the art of
suppressing them. Perhaps the attack is more exciting than
the defense—something more glamorous about finding a
way to read one of these signals than going through the
drudgery necessary to suppress that whacking great spike
first seen in 1943. At any rate, when they turned over the
next rock, they found the acoustic problem under it.
Phenomenon No. 5.

Acoustics

We found that most acoustic emanations are difficult to
exploit if the microphonic device is outside of the room
containing the source equipment; even a piece of paper
inserted between, say, an offending keyboard and a pick-up

Past — earliest days

Side Channels always existed
First scientific observations in 1943

Concept of “covert channels” in 1973

Operating C. Weissman
Systems Editor

A Note onthe
Confinement Problem

Butler W. Lampson
Xerox Palo Alto Research Center

This note explores the problem of confining a
program during its execution so that it cannot transmit
information to any other program except its caller. A
set of examples attempts to stake out the boundaries of
the problem. Necessary conditions for a solution are
stated and informally justified.

Communications October 1973
of Volume 16
the ACM Number 10

Past — earliest days

Side Channels always existed
First scientific observations in 1943
Concept of “covert channels” in 1973

1974-1980: Provable secure operating
systems with exceptions for side
channels

1985: Orange book. Covert channels
with low bandwidth not a problem

1996: Paul Kocher’s seminal work on
timing attacks

FIGURE 1: RSAREF Modular Multiplication Times

FIGURE 2: RSAREF Modular Exponentiation Times

Frequency

1100

1110

1120 -
1130
1140

1150
1160
1170
1180

Time (107 sec)

o
&)
-

o O O O
O =« N ™
N N N N
- = =

Frequency

419200

419400
419600
419800
420000
420200
420400
420600

Time (10 sec)

Past:
cryptographic attacks

1996-2015 Mainly side channels on
cryptography (threat model!)

1 I MAGINATION -

A CRYPTO NERD'S

HIS LAPTOP’S ENCRYPTED.
LETS BUILD A MILLION-DOULAR
CLOSTER To CRACK \T.

NO GooD! IT’S
uoqa -BIT RSA‘

EVIL PLF\N
\S FOILED! ™

|

WHAT WOULD

ACTUALLY HAPPEN:

H'S LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH

THIS $5 WRENCH UNTIL
HE TELlS LS THE. PASSWORD.

GOT T,

VK

Past:
cryptographic attacks

1996-2015 Mainly side channels on
cryptography (threat model!)

Colin Percival (2005): “Cache Missing
for fun and profit”

Time (cycles)

{524

-10°

-10°

-10°

-10°

-10°

-10°

Cache congruency class

=T

i

|

Il

I

22 mod p

2% mod p
22 mod p
22 mod p
22 mod p

2kt

2-a?*t! mod p

22 mod p

22 mod p
22 mod p
2% mod p

22 mod p

. a2k

22 mod p

22 mod p

2% mod p

22 mod p

x . a2k+1
22 mod p

22 mod p

22 mod p

mod p

mod p

Past:
Moving beyond crypto

ISCA 2014 + BlackHat US 2015:
Rowhammer

row4
row 3
row 2
row 1
row 0

row-buffer

a. Rows of cells

o

—————————————————

b. A single cell

https://docs.google.com/file/d/1US1vZkBsYXePtLjmcj_ZfviUds9UDGNa/preview

Past:
Moving beyond crypto

ISCA 2014 + BlackHat US 2015:
Rowhammer

USENIX Security 2015:
Cache Template Attacks

Terminal
File Edit View Search Terminal Help

% sleep 2; ./spy 300 7f05140a4000-7f051417b000 r-xp 0x20000 08:02 26
8050 /usr/1ib/x86 64-1inux-gnu/gedit/1libgedit.so

o~ chl <NIR=>14 03 2017 21:44-26

File Edit View Search Terminal Help

sharks ./spy []

vnomeradnien)s:

Untitled Document 1

PlainText v TabWidth:2 v

Ln1,Col1

INS

https://docs.google.com/file/d/15CJqa35kf4xEl1xroFV5im55c8-hrNpA/preview

Past:
Moving beyond crypto

ISCA 2014 + BlackHat US 2015:
Rowhammer

USENIX Security 2015:
Cache Template Attacks

CCS + BlackHat US 2016:
Breaking KASLR

Breaking Kernel Address Space Layout Randomization with Intel TSX

Yeongjin Jang, Sangho Lee, and Taesoo Kim
Georgia Institute of Technology

350
300
250
200 ©]
150

50 100 150 200 250 300 350 400 450 500

Prefetch Side-Channel Attacks:
Bypassing SMAP and Kernel ASLR
Daniel Gruss* Clémentine Maurice- Anders Foght!

Moritz Lipp* Stefan Mangard-
* Graz University of Technology ' G DATA Advanced Analytics

CacheQuote: Efficiently Recovering Long-term

Secrets of SGX EPID via Cache Attacks Apphcatlon

Fergus Dall', Gabrielle De Micheli?, Thomas Eisenbarth®*, Daniel Genkin®°,
- Nadia Heninger?, Ahmad Moghimi* and Yuval Yarom!®) .
Pa St P Heninger, Al Togt e T (U ntrusted Controlled-Channel Attacks: Deterministic Side
E Channels for Untrusted Operating Systems

.
Moving beyond crypto
Microsoft Research

C reat e E IlC]. ‘ The University of Texas at Austin Microsoft Research
] yxu@cs.utexas.edu wdcui@microsoft.com arcusy soft.com

‘ = = b 'l'viictad Kne || |

ISCA 2014 + BlackHat US 2015: |

-
Rowhammer
L) BranchScope: A New Side-Channel Attack on
. Directional Branch Predictor
U S E N |X SeCU rlty 20 1 5 Dmitry Evtyushkin Ryan Riley)
College of William and Mary Carnegie Mellon University in Qatar COPYCAT: Controlled Instruction-Level Attacks on Encl:
Cache Template Attacks devtyushlin@wm edu eyrd@emued
Nael, Abu—Q ha.zal.eh . D@itry Pono.man.av Daniel Moghimi', Jo Van Bulck?, Nadia Heninger®, Frank Piessens?, and Ber
University of California Riverside Binghamton University
CCS + BIaCkH at U S 20 1 6 : neclag@ured dporiomar@hinghamfon.dy 'Worcester Polytechnic Institute, Worcester, MA, USA
: 2imec-DistriNet, KU Leuven, Leuven, Belgium
B reaki n g KAS L R 3University of California, San Diego, CA, USA

2017: Many academic works on attacking
TEEs with side channels How Trusted Execulti
Environments Fuel F
on Microarchitectura

Session Kd: Secure Enclaves €CS°17, October 30-November 3, 2017, Dallas, TX, U
CacheZoom: How SGX Amplifies The Power of Cache Attacks m .
s Leaky Cauldron on the Dark Land: Understanding Memory
|) Side-Channel Hazards in SGX
Ahmad Moghimi Gorka Irazoqui
Worcester Polytechnic Institute Worcester Polytechnic Institute Wenhao Wang?, Guoxing Chen®, Xiaorui Pan?, Yingian Zhang®, XiaoFeng Wang?,
amoghimi@wpi.edu girazoki@wpi.edu Vincent Bindschaedler?, Haixu Tang?, Carl A. Gunter®"

ISKLOIS, Institute of Information Engineering, Chinese Academy of Sciences & Indiana University Bloomington

Past:
Moving beyond crypto

ISCA 2014 + BlackHat US 2015:
Rowhammer

USENIX Security 2015:
Cache Template Attacks

CCS + BlackHat US 2016:
Breaking KASLR

2017: Many academic works on attacking
TEEs with side channels

USENIX + BlackHat US 2018, S&P 2019:
Spectre & Meltdown

https://docs.google.com/file/d/1yKW-keLy7tQ7x9Fb90sq3P_V6DWbPW5X/preview

@ preface

o

architectural

time

@ preface @ trigger instruction ‘1

o

architectural transient execution

time

@ preface @ trigger instruction ‘)”

o

[@ transient access to secret]

architectural transient execution

time

@ preface @ trigger instruction ‘)”

o

[@ transient access to secret]

[@ transmission of secret

——

architectural transient execution '

time

@ preface @ trigger instruction ‘1 @ fixup

! —
ey [@ transient access to secretJ : |||
& ! [@ transmission of secret :
architectural : transient execution : architectural

>

time

@ preface @ trigger instruction ‘1 @ fixup

]

[@ transient access to secret]

[@ transmission of secret

4

> : = <&
[@ reconstruct
architectural \ transient execution : architectural

>

time

Past: Meltdown

@ preface @ trigger instruction ‘* @ fixup

{ @ transient access to secret}

.

[@ transmission of secret

o

4

@ reconstruct

)

architectural transient execution architectural >
time
<window gadget> mov rbx, [kerneladdressj <recover via SC>

Out-of-Order unit — out of order execution (track speculation & faults)

Meltdown: Detalls

VAR(?V:/3 L1 “front end” All data for
AGU [6.13] Provide all data from ways VA L1 “back
Calculate end”
Virtual Select relevant data
Address and return data to
(VA) DTLB PA 000
VA Get Physical 8,:-\ddress (PA) e
Raise faults
T 5
c 0 0 O
o O
v O c Q
© = o
»n Q
<window gadget> mov rbx, [kerneladdressj <recover via SC>

Out-of-Order unit — out of order execution (track speculation & faults)

Meltdown: Detalls

1. 000 Trigger

load to AGU
Row L1 “f » All data f
ront end ata ror p
AGU A T Provide all data from ways VA L1 "back
Calculate end”
Virtual Select relevant
Address data and return
(VA) DTLB PA data to OoO
VA Get Physical £ddress (PA) (wayselect)
Raise faults
o
20 T
55 o)) O
v O c L
@® (7)" Q)
<window \ <recover via
gadget> mov rbx, [kerneladdress: aC>

Out-of-Order unit — out of order execution (track speculation & faults)

Meltdown: Detalls

1. 1.000 Trigger load to

AGU
2. 2.AGU sends
: Row u » All data for
index to L1 & acul wes] | L1 f”rontfend o L1 “back
VA to DTLB e rovide all data from ways ond’
alculate
A\(/ji(r,tual Select relevant
ress data and return
(VA) DTI—B PA data to 00O
VA Get Physical £ddress (PA) e el
Raise faults
T %
£ o U
¥ O = o
© o QO
<window \ <recover via
gadget> mov rbx, [kerneladdress: S

Out-of-Order unit — out of order execution (track speculation & faults)

Meltdown: Detalls

Row .
AGU VA[6..13
Calculate
Virtual

1. 000 Trigger load to
AGU

2. AGU sends index to
L1 & VAto DTLB

3. L1 identifies all
cache lines for
for index

Address
(VA)

>

Kern
address

VA

L1 “front end” All data fo L1 “back
Provide all data from ways VA bac
end”
Select relevant
data and return
DTLB PA data to OoO
Get Physical Address (PA)
Py (way select)
Raise faults
T
Q)
= 1
7] ©

<window

gadget>

mov rbx, [kerneladdre s&

<recover via
SC>

Out-of-Order unit — out of order execution (track speculation & faults)

Meltdown: Detalls

Jow L L1 “frontend” | Alldatafo
AGU ‘[l/y Provide all data from ways VA
Calculate
Virtual

1. 1.000 Trigger load to
AGU

2. 2.AGU sends index to
L1 & VAto DTLB

3. 3.a L1 identifies all
cache lines for for
index

4. DTLB sends PA
to L1 and faults
to Oo0O

Address
(VA)

AN

Kernel
address

DTLB

L1 “back
end”

Select relevant
data and return

PA data to 00O
VA Get Physical £ddress (PA) fEyealos)
Raise faults l/
L
Q O
= 1
7 Q

<window

gadget>

mov rbx, [kerneladdre s&

<recover via
SC>

Out-of-Order unit — out of order execution (track speculation & faults)

Meltdown: Detalls

Row L1 “front end” All data fo

1. 000 Trigger load to
AGU

2. AGU sends index to
L1 & VAto DTLB

3. L1 identifies all cache
lines for for index

4. DTLB sends PA &
faults to L1/0o00O

5. L1 send right
data to OoO

Address
(VA)

AN

Kernel
ess

13
AGU YRS Provide all data from ways VA L1 "back
Calculate end”
Virtual Select relevant
data and return
DTLB PA data to OoO
VA Get Physical £ddress (PA) (wayselect)
Raise faults l/
T
Q)
= 1
73 QO

addr

<window

gadget>

mov rbx, [kerneladdre s&

<recover via
SC>

Out-of-Order unit — out of order execution (track speculation & faults)

Meltdown: Detalls

Jow L L1 “frontend” | Alldatafo
AGU ‘[l/y Provide all data from ways VA
Calculate
Virtual

1. 000 Trigger load to
AGU

2. AGU sends index to
L1 & VAto DTLB

3. L1 identifies all cache
lines for for index

4. DTLB sends PA &
faults to L1/0o00O

5. L1 sendright data to
000

6. 000 execute
depend
instructions

Address
(VA)

AN

Kernel
address

DTLB

L1 “back
end”

Select relevant
data and return

PA data to 00O
VA Get Physical £ddress (PA) fEyealos)
Raise faults l/
L
Q O
= 1
7 Q

<window

gadget>

mov rbx, [kerneladdre s&

<recover via
SC>

Out-of-Order unit — out of order execution (track speculation & faults)

The First Meltdown Mitigations

AGU

Calculate
Virtual
Address
(VA)

Kernel
address

<window gadget>

Row
VA[6..13]

VA

L1 “front end”

Provide all data from ways

DTLB

Get Physical Address (PA)
&

Raise faults

sjne

All data for
VA

PA

t

L1 “back
end”

Select relevant data
and return data to

000
If Fault return O

0 1o eleQ

mov rbx, [kerneladdressj

<recover via SC>

Out-of-Order unit — out of order execution (track speculation & faults)

Meltdown defense in depth (LASS)

AGU \

Calculate VE§V¥3 L1 “front end” All data fo
Virtual [6.. Provide all data from ways VA L1 “back

Address ”
(VA) end

If CPL=3 Select relevant data
&& and return data to
VA&bIt[63] DTLB BA 000
raise fault VA Get Physical Address (PA) If Fault return 0

(way select)
and stop & +Faults
Raise faults

S ny S
) c ®
£ 7 o
o

<window gadget> mov rbx, [kerneladdressj <recover via SC>

Out-of-Order unit — out of order execution (track speculation & faults)

Spectre and LVI

Methodology
u-Arch Buffer

-

Leakage 'ao-

Injection f

g PHT BranchScope [79], Bluethunder [131]| Spectre-PHT [174]

:S %3 BTB SBPA [8], BranchShadow [182] Spectre-BTB [174]

"Qg “i RSB Hyper-Channel [46] Spectre-RSB [177, 200]
(L ©S STL — Spectre-STL [128]

f§ NULL EchoLoad [49] LVI-NULL [311]

© L1D Meltdown [193], Foreshadow [310] | LVI-L1D [311]

= FPU LazyFP [291] LVI-FPU [311]

go SB Store-to-Leak [270], Fallout [48] LVI-SB [311]

2 LFB/LP ZombieLoad [276], RIDL [267] LVI-LFB/LP [311]

Present

Present: Trends

| Attack type Activity level (Point) Mitigation Notable
________ Crypt03|dechannelsGwdance&DOITDatadependentfeaturesfor
: : : example data dependent
prefetchers
Transient execution . Hardware + Software : Predictive store forwarding '
vulnerabilities . +on/off switches
. : : Workarounds
.~ Stale data vulnerabilities Microcode Patches or : Not any recent attacks '

- SW Mitigation
 (if possible)

Logical bugs . Microcode Patches
: . (if possible)

Exploitation methods Spectre & Power

Logic Issues

Reptar - What's supposed to happen

REPNZ is a prefix that will repeat an operation until

the Z-flag becomes zero. .
Opcode input Rex.pf repnz movsb

MOVSB will copy a single byte from DS:[RSI] to

ES:[RDI] and increment both registers and
decrement RCX & update flags.

Parsing input

REPNZ MOVSB is thus a simple memcpy. R}ngf repnz movsb => 0xABCD

how explicit operands of an instruction are

The REX-prefix (REX.PF) changes the meaning of REX-PF l
interpreted. MOVSB doesn’t have any explicit

operands. Issue uOps from OxABCD => uOps for repnz
Parsed input OxABCD

If you use the REX-prefix with REPNZ MOVSB the

CPU should ignore the prefix entirely

Reptar - The bug

When the REX-prefix is parsed instead of ignored
a single bit is overwritten.

This cause an invalid input to be used to generate
uOps.

Under certain conditions this leads to a machine
check. Careful analysis found that a condition
could potentially lead to privilege escalation.

A microcode change that mitigates the issue has
been made public.

Opcode input

Parsing input
Parses the
REX-PF and
Overwrite a bit

Issue uOps from
Parsed input

Rex.pf repnz movsb

4

Rex.pf repnz movsb =>0xBBCD

INVALID INPUT for uOps issue

Cachewarp

Confidential VM (encrypted but
basically no data integrity)

invd instruction can invalidate a single
cache line

Attack in three steps:

1. let confidential VM modify a
target cache line

2. use invd to drop the
modification

3. confidential VM continues with
an outdated value

CacheWarp: Software-based Fault Injection using Selective State Reset

Ruiyi Zhang Lukas Gerlach Daniel Weber
CISPA Helmholtz Center CISPA Helmholtz Center CISPA Helmholtz Center
for Information Security for Information Security for Information Security
Lorenz Hetterich Youheng Lii Andreas Kogler
CISPA Helmholtz Center Independent Graz University of Technolog
for Information Security { 5 RS ‘c
Michael Schwarz . o
CISPA Helmholtz Center for Information Security wetl
o
Res:mov“a“

http://www.youtube.com/watch?v=Za6KVLVF1AA

Zenbleed

Register names are just for the user, CPU uses
register file

XMM Register Merge Optimization: merge
registers (e.g. zero registers)

also: for zero just set a zero-bit
Zenbleed:

misspeculation

vzeroupper — set zero-bit

merge — storage in register file released
victim stores data in this register

unroll misspeculation

architectural access to a victim data

ok wN =~

YMMO (upper) YMMO (upper)
YMM1 (upper) YMM1 (upper)
YMM2 (upper) YMM2 (upper)
YMMS3 (upper) YMMS3 (upper)
YMMO (lower) YMMO (lower)
YMM1 (lower) YMM1 (lower)
YMM2 (lower) YMM?2 (lower)
YMM3 (lower) YMM3 (lower)
cpu0 cpul

Exploitation Techniques

Exploitation techniques -
example

GhostRace: Exploiting and Mitigating
Speculative Race Conditions - Hany Ragab et.
al.

Spectre v1. variant that speculatively bypasses
synchronization primitives.

Existing methods of mitigating Spectre v1
remain effective.

0NV B W N

0

10
11
12
13

struct nfc_hci_dev { SHARED DATA

struct hei_msg {

void (*cb)(...);
void *cb_context;

struct mutex msg_tx_mutex;
struct hci_msg* cmd_pending_msg;
; 3

THREAD 2
nfc_hci_msg_tx_work(hdev){

THREAD 1
nfc_hci_msg_tx_work(hdev){

mutex_lock(&hdev->msg_tx_mutex); -@- mutex_lock(&hdev->msg_tx_mutex);
hdev->cmd_pending_msg->cb(
hdev->cmd_pending_msg->
cb_context, NULL, -ETIME);
kfree(hdev->cmd_pending_msg); fr
hdev->cmd_pending_msg = NULL;

) B

Quote from the papers abstract:
“There’s is security, and then there’s just being ridiculous” - Linus
Torvalds, on Speculative Race Conditions

Physical Domain in
Software

v

v

Jl i iqul
Wi

|
W

Lohohokd
M

ki

L]

128
‘Time(s)

) Y SUWAMAN

5 letters

112

Time(s)

13

Software-based

6 letters

Power Analysis

AR SR, FORRARRR

before 2020: mainly fingerprinting

7 letters

10

‘Time(s)

.
Q w

signin

amazon

Cart subtotal (1 item): $379.00

Test Run 1

====Test Run 2
= = TestRun3

o M

——

]

DA AR

[emlamogq

Time[100 milliseconds]

Software-based
Power Analysis

before 2020: mainly fingerprinting

2020: Platypus
full recovery of cryptographic keys

Voltage
[mV]

1,010

1,005

1,000

]

0% 2P on ¥ 00 @av o cmemnne? o @ ® A ware & Sowses o .‘a-dum o’"‘oﬂ.‘-f-o&"‘ s © oodamen n.‘ﬂﬁ v 2N e

o |o i £ i3 SRGRTCIF I L ek £/ L0 VDRI VLGN Il Mt Xt Ul et 2% T Ml £ Kl
leo| ¢ g N
000 WU ‘we o 0ee oo | | | | |
0 50 100 150 200 250 300 350 400 450 500

Key Bit

Fig. 13: Core voltage per measured instruction for each key bit offset in the fixed window length implementation of mbed
TLS inside an SGX enclave on the Xeon E3-1275 v5. The blue marks represent 1 bits, while the red marks represent O bits.

Using a threshold (dashed line), they can easily be distinguished.

Software-based
Power Analysis

before 2020: mainly fingerprinting

2020: Platypus
full recovery of cryptographic keys

2023: Hertzbleed
DVFS makes timing a proxy for energy
consumption — remote attacks

A r' 663 -
662 -

mj

m

Time (ms)

661

7| =

|

® mi=mii1
® mi=mi_1

Lt |

663 -
W 662 -
g #Mj_1
£ 661 - = Mi-1
=
660 -
0 3 6 9 12 15 18

(a) CIRCL first 20 bits

Secret key bit index

345 348 351 354 357 360 363

Secret key bit index

(b) CIRCL last 20 bits

Way Way2 Way3 Wayyq Ways Wayy 1 Attacker

: e —]
Software-based e T - 5 v
. ! :
Power Analysis : :
before 2020: mainly fingerprinting (a) Step 1: The attacker primes each cache line of the target cache
set with the attacker-controlled guess G.
2020: Platypus ,'""""""""""":v ___________ i
. | Way| Way Way3 Wayq ays Wayy 1 Attacker
full recovery of cryptographic keys | |
: Sctz I I l I I l o : : Victim
2023: Hertzbleed | e S v]
DVFS makes timing a proxy for energy !]
consumption — remote attacks 5 ‘
seg (b) Step 2: The victim accesses the secret V and forces a cache line
2023: Collide+Power ‘5 e‘xc to change from G to V.
Generic Attacks (not just crypto) : e — !
| A < 1 Attacker
' 7| hd([— [) =4]
| h(EE-ED)=0 G |

(c) Step 3: The energy consumption during this change is propor-
tional to the number of bit changes between G and V.

Software-based
Fault Attacks

since 2015: Rowhammer
still not solved!

ZENHAMMER: Rowhammer Attacks on AMD Zen-based Platforms

Patrick Jattke® Max Wipflif ~ Flavien Solt Michele Marazzi Matej Bolcskei Kaveh Razavi
ETH Zurich

Table 10. Analysis of the bit flip exploitability found during the sweep over 256 MiB on AMD Zen 2, Zen 3, and Intel Coffee Lake. For each
attack, we indicate the number of exploitable bit flips (#Ex.) and average time to find an exploitable bit flip (Time). We mark DIMMs with a
single exploitable bit flip by (*). We omit DIMMs without any exploitable bit flips.

PTE [36] RSA-2048 [34] sudo [11]
DIMM Zen 2 Zen 3 Coffee Lake Zen 2 Zen 3 Coffee Lake Zen 2 Zen 3 Coffee Lake

#Ex. Time #Ex. Time #Ex. Time #Ex. Time #Ex. Time #Ex. Time #Ex.T. #Ex. Time #Ex. Time
So 7 6m 4s 7 2m 55s 34m 15s 17 2m47s 37 46s 14 Im 36s - = 4 3m 13s 1 *23m 49s
S 90 9s 1474 2s 846 2s 6 2m 2s 27 30s 21 26s - - 1 #*6m 50s I *1m20s
S 641 21s 5326 Is 126 11s 30 2m 16s 170 6s 6 Im 59s - = 12 Im17s - -
S3 142 9s 6l 32s - - 7 2m2ls - - - - - - - - - -
Sa 220 28s 323m 52s 2658 Is 7 12m 29s 1 #23m 52s 53 26s - - - - 4 5m16s
Ss 102 6s 625 2s 330 4s 6 Iml4s 28 33s 11 Im 5s - - 2 5m58s 3 2m34s

_']‘ﬂ) 11 53s = = = - - - - - - - e o =

Trustzone Normal
| " ct
1 o
: plaintext
SOftwa re'based Correct | £L—» ﬁ"\' \
secret AES. \ ‘ .
Fault Attacks Diferental _, 22,
: Fault Analysis [1] key
_ Trustzone Normal
since 2015: Rowhammer x”‘“%“b faulty
still not solved! Faulty | _s ' plaimtext
A
Sigye decéfp?tion ciphertext
2017: CLKScrew ‘
overclock and attack Arm TrustZone
0.7 0.6 +———————————————i
0.6 >osl]
5]]
52 504
204 =
° - 0.3]
o3 g
© © 0.2
€02 g e
§ 0.1 § 0.1 _‘
0'012345678 0'013579111315

of faulted AES rounds

of faulted bytes within one round

Software-based
Fault Attacks

since 2015: Rowhammer
still not solved!

2017: CLKSkrew
overclock and attack Arm TrustZone

2020: Plundervolt (VoltJockey,
VOItpwn, VoltPillager)
undervolt and attack Intel SGX

——Base voltage
+— Voltage for first fault

0.7

0.9

1.1 1.3 1.5
Frequency (GHz)

1.7

1.9

2.1

https://docs.google.com/file/d/1KgEebTV6nDWTkIHKNX6vRNZiC1nIxGlU/preview

Mitigation efforts

Limitations of
mitigations

Physical hardware cannot be
changed in the field

I'M HERETO I’ATGH THE
GIBBUITBY INIYOIIII PROCESSOR

Limitations of
mitigations

Physical hardware cannot be
changed in the field

Limitations of
mitigations

Physical hardware cannot be IS e

changed in the field

Vendors build in “Survivability features” @

Microcode / Firmware

Microcode is the most common used tool for
mitigations.

Other firmware is also used

Limitations of
mitigations

Physical hardware cannot be
changed in the field

Vendors build in “Survivability features”

Microcode is the most common used tool for
mitigations.

Other firmware is also used

“Chicken bits” to disable / change behavior

il

h
MEOW CHOW

S
— CHICKEN BITS —

Chicken bit

-

Limitations of
mitigations

Physical hardware cannot be
changed in the field

Vendors build in “Survivability features”

Microcode is the most common used tool for
mitigations.

Other firmware is also used

“Chicken bits” to disable / change behavior

Some issues are best mitigated in software

Kernel page-table isolation

Kernel space

Kernel space

Kernel space

User space

User space

User space

User mode
Kernel mode

Kernel mode

User mode

Limitations of
mitigations

Physical hardware cannot be
changed in the field

Vendors build in “Survivability features”

Microcode is the most common used tool for
mitigations.

Other firmware is also used

“Chicken bits” to disable / change behavior

Some issues are best mitigated in software

Mitigations are not always
possible/reasonable and almost always
difficult and time-consuming to engineer

Prevention Pre-silicon

Prevention starts before the
product exist: pre-silicon

Pre-silicon is slow and

cumbersome as the chips are
emulated or simulated.

This makes security validation &
research significantly different

from software validation

Architecture reviews

Taint tracking

Validation

Formal validation

Defense in depth &
hardening

Gives great ROI
There is formal and informal reviews on
arch

Taint tracking has proven useful for
some issues

Techniques such as CellFT used in
production

Security properties to standard
validation
FInds bugs during development

Formal works well with hardware IP
Formal definition of security properties
can be done, but not easy

Bug analysis should lead to lessons
learned

Post-silicon

Prevention in silicon
happens before product ship

from AOQ to shipping systems.

Some issues are best found
in post-silicon.

Post-silicon issues are
particularly difficult.

Learning from issues on last
generation hardware is critically
important.

Manual research

VEUEWEREWES

Validation

Fuzzing

Manual research is effective

Enabled by expertise, documentation,
access to devs, debug, etc.

Early silicon helps prevent escapes

Variant analysis on every issue
Occasionally finds issues, but lots of
learning for systematic efforts

Especially useful on early silicon
Regression issues
Issues not easily found in pre-si

Problematic: Large state space, slow
with good feedback
There are exceptions

Future of uArch security
is future of uArch

Silicon performance is the main
underlying driver for growth in compute
ecosystem

Performance comes from
3 sources

New process technology
uArch improvements
Adaptation to changed
workloads

uArch improvements & Changed
workloads will lead to new security
challenges

uArch security future
Offense

New kinds of prediction & data dependent
behaviors (memory latency!). Memory is order of
magnitude slower than compute. Some
examples:

New kinds of caches and bigger caches
Work load specific prefetchers

Different kinds of value prediction

Cache & memory compression

Growth in reorder buffer sizes

New exploitation techniques

Defense

Increased maturity
o Better tooling
o More defense in depth

New microarchitecture
security features
More configurability of

security
o Ex.PSF switch on AMD
Improved support for

software influence
o Ex. Local configuration
switches

New kinds of compute

more heterogeneous - but all have uArch:

e GPU (new use cases)

o Remote accessible

o Increased complexity and new work loads

o Example: “LeftoverLocals” by Trails of Bits
e Neural Processing Units

o New model of compute
o New threats: Integrity of models
o Attack vector against system

e Al training accelerators in the
cloud

o Soon: shared resources + multi tenant

e More generally: More kinds of compute,

more accelerators

Defensive side of
things

Huge gap between academia and
industry:

Academia

e provable Rowhammer
mitigations available
e provable secure cache available

Industry

e probabilistic Rowhammer
mitigations

e secure caches not adopted (but
non-inclusive LLCs)

SNOWMEN

uArch in uArch

Embedded processors everywhere --
already with speculation:

Speculation vs confidentiality?

e Threat models rarely contain
arbitrary execution
— constrains attackers
e Embedded processors often provide
low-level access — new and
different kinds of assets

Take Aways

Side channels are here to stay
- Side channels can be managed
more aspects of microarchitecture and different kinds of issues

- Hard work for both offensive research and defense
- Defense is maturing

Microarchitecture is a growth area, so is microarchitecture security

Microarchitecture matters, so does microarchitecture security

Microarchitecture
Vulnerabilities

Past, Present and Future

Daniel Gruss (Graz University of Technology)
Anders Fogh (Intel Corporation)

