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Past – earliest days

Side Channels always existed

First scientific observations in 1943

Concept of “covert channels” in 1973

1974-1980: Provable secure operating 
systems with exceptions for side 
channels

1985: Orange book. Covert channels 
with low bandwidth not a problem

1996: Paul Kocher’s seminal work on 
timing attacks



Past:
cryptographic attacks

1996-2015 Mainly side channels on 
cryptography (threat model!)



Past:
cryptographic attacks

1996-2015 Mainly side channels on 
cryptography (threat model!)

Colin Percival (2005): “Cache Missing 
for fun and profit”
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1. Window gadget starts executing
2. Mov rbx, [KernelAddress] starts executing
3. Mov rbx, [KernelAddress] Finish execution and deliver data
4. Store in Side Channel (SC): starts execution with data from 3.
5. Store in Side Channel (SC): Data is used to touch the cache allowing the attacker to recover 

the data
6. Windows Gadget finishes
7. Fault is raised by “Mov rbx, [KernelAddress] “. All registers are cleared but data maintain 

persistent in the cache.

Past: Meltdown

Out-of-Order unit – out of order execution (track speculation & faults)

<window gadget> mov rbx,[kerneladdress] <recover via SC>
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The First Meltdown Mitigations

Out-of-Order unit – out of order execution (track speculation & faults)

<window gadget> mov rbx,[kerneladdress] <recover via SC>
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Spectre and LVI
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Present: Trends

Attack type Activity level (Point) Mitigation Notable

Crypto side channels
↘

Guidance & DOIT Data dependent features for 
example  data dependent 

prefetchers
Transient execution 

vulnerabilities ↘ Hardware + Software 
+on/off switches 

Workarounds

Predictive store forwarding

Stale data vulnerabilities
↘ Microcode Patches or 

SW Mitigation
(if possible)

Not any recent attacks

Logical bugs
↗ Microcode Patches

(if possible)
Reptar, CacheWarp

Physical properties
↗

Hertzbleed, Collide+Power

Exploitation methods
↗

Spectre & Power



Logic Issues



Reptar - What’s supposed to happen
REPNZ is a prefix that will repeat an operation until 
the Z-flag becomes zero.

MOVSB will copy a single byte from DS:[RSI] to 
ES:[RDI] and increment both registers and 
decrement RCX & update flags. 

REPNZ MOVSB is thus a simple memcpy.

The REX-prefix (REX.PF) changes the meaning of 
how explicit operands of an instruction are 
interpreted. MOVSB doesn’t have any explicit 
operands. 

If you use the REX-prefix with REPNZ MOVSB the 
CPU should ignore the prefix entirely



Reptar - The bug
When the REX-prefix is parsed instead of ignored 
a single bit is overwritten.

This cause an invalid input to be used to generate 
uOps.

Under certain conditions this leads to a machine 
check. Careful analysis found that a condition 
could potentially lead to privilege escalation.

A microcode change that mitigates the issue has 
been made public.



Cachewarp
Confidential VM (encrypted but 
basically no data integrity)

invd instruction can invalidate a single 
cache line

Attack in three steps:

1. let confidential VM modify a 
target cache line

2. use invd to drop the 
modification

3. confidential VM continues  with 
an outdated value

http://www.youtube.com/watch?v=Za6KVLVF1AA


Zenbleed
Register names are just for the user, CPU uses 
register file

XMM Register Merge Optimization: merge 
registers (e.g. zero registers)

also: for zero just set a zero-bit

Zenbleed:

1. misspeculation
2. vzeroupper → set zero-bit
3. merge → storage in register file released
4. victim stores data in this register
5. unroll misspeculation
6. architectural access to a victim data



Exploitation Techniques



Exploitation techniques - 
example
GhostRace: Exploiting and Mitigating 
Speculative Race Conditions - Hany Ragab et. 
al.

Spectre v1. variant that speculatively bypasses 
synchronization primitives.

Existing methods of mitigating Spectre v1 
remain effective.

Quote from the papers abstract:
“There’s is security, and then there’s just being ridiculous”  - Linus 
Torvalds, on Speculative Race Conditions
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before 2020: mainly fingerprinting



Software-based 
Power Analysis

before 2020: mainly fingerprinting

2020: Platypus
full recovery of cryptographic keys



Software-based 
Power Analysis

before 2020: mainly fingerprinting

2020: Platypus
full recovery of cryptographic keys

2023: Hertzbleed
DVFS makes timing a proxy for energy 
consumption → remote attacks



Software-based 
Power Analysis

before 2020: mainly fingerprinting

2020: Platypus
full recovery of cryptographic keys

2023: Hertzbleed
DVFS makes timing a proxy for energy 
consumption → remote attacks

2023: Collide+Power
Generic Attacks (not just crypto)
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Fault Attacks

since 2015: Rowhammer
still not solved!
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Software-based
Fault Attacks

since 2015: Rowhammer
still not solved!

2017: CLKSkrew
overclock and attack Arm TrustZone

2020: Plundervolt (VoltJockey, 
V0ltpwn, VoltPillager)
undervolt and attack Intel SGX

https://docs.google.com/file/d/1KgEebTV6nDWTkIHKNX6vRNZiC1nIxGlU/preview
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Limitations of 
mitigations

Physical hardware cannot be 
changed in the field

Vendors build in “Survivability features” 

Microcode is the most common used tool for 
mitigations.

Other firmware is also used

“Chicken bits” to disable / change behavior

Some issues are best mitigated in software

Mitigations are not always 
possible/reasonable and almost always 

difficult and time-consuming to engineer



Prevention starts before the 
product exist: pre-silicon

Pre-silicon is slow and 
cumbersome as the chips are 
emulated or simulated.

This makes security validation & 

research significantly different 
from software validation

Prevention Pre-silicon

Validation03
● Security properties to standard 

validation
● FInds bugs during development

Formal validation04
● Formal works well with hardware IP
● Formal definition of security properties 

can be done, but not easy

Architecture reviews01
● Gives great ROI
● There is formal and informal reviews on 

arch

Taint tracking02
● Taint tracking has proven useful for 

some issues
● Techniques such as  CellFT used in 

production

Defense in depth & 
hardening05

● Bug analysis should lead to lessons 
learned



Post-silicon

Prevention in silicon 
happens before product ship 
from A0 to shipping systems. 

Some issues are best found 
in post-silicon.

Post-silicon issues are 
particularly difficult.

Learning from issues on last 
generation hardware is critically 
important.

Validation03
● Especially useful on early silicon
● Regression issues
● Issues not easily found in pre-si

Fuzzing04
● Problematic: Large state space, slow 

with good feedback
● There are exceptions

Manual research01
● Manual research is effective
● Enabled by expertise, documentation, 

access to devs, debug, etc. 
● Early silicon helps prevent escapes

Variant analysis02
● Variant analysis on every issue
● Occasionally finds issues, but lots of 

learning for systematic efforts



Future



Future of uArch  security 
is future of uArch

Silicon performance is the main 
underlying driver for growth in compute 
ecosystem

Performance comes from 
3 sources

● New process technology
● uArch improvements
● Adaptation to changed 

workloads

uArch improvements & Changed 
workloads will lead to new security 
challenges



uArch security future
Offense

New kinds of prediction & data dependent 
behaviors (memory latency!). Memory is order of 
magnitude slower than compute. Some 
examples:

● New kinds of caches and bigger caches
● Work load specific prefetchers
● Different kinds of value prediction
● Cache & memory compression
● Growth in reorder buffer sizes
● New exploitation techniques

Defense

● Increased maturity
○ Better tooling
○ More defense in depth

● New microarchitecture 
security features

● More configurability of 
security 

○ Ex.PSF switch on AMD
● Improved support for 

software influence
○ Ex. Local configuration 

switches



New kinds of compute
more heterogeneous - but all have uArch:

● GPU (new use cases)
○ Remote accessible
○ Increased complexity and new work loads
○ Example: “LeftoverLocals” by Trails of Bits

● Neural Processing Units
○ New model of compute
○ New threats: Integrity of models
○ Attack vector against system

● AI training accelerators in the 
cloud

○ Soon: shared resources + multi tenant

● More generally: More kinds of compute, 
more accelerators



Defensive side of 
things
Huge gap between academia and 
industry:

Academia
● provable Rowhammer 

mitigations available
● provable secure cache available

Industry
● probabilistic Rowhammer 

mitigations
● secure caches not adopted (but 

non-inclusive LLCs)



uArch in uArch

Embedded processors everywhere -- 
already with speculation:

Speculation vs confidentiality?

● Threat models rarely contain 
arbitrary execution

→ constrains attackers
● Embedded processors often provide 

low-level access → new and 
different kinds of assets



Take Aways

Side channels are here to stay

- Side channels can be managed

more aspects of microarchitecture and different kinds of issues

- Hard work for both offensive research and defense
- Defense is maturing

Microarchitecture is a growth area, so is microarchitecture security

Microarchitecture matters, so does microarchitecture security
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