FromWeaponto lTarget:
Quantum ComputersParadox

Madalina Bolboceanu
mbolboceanu@bitdefender.com

Sorin Bolos

sorin.bolos@transilvania-quantum.com

Adrian Colesa

acolesa@bitdefender.com

Andrei Kisari

akisari@bitdefender.com

Andrei Lutas

vlutas@bitdefender.com

Dan Lutas
dlutas@bitdefender.com

Radu Marginean
radu.marginean®@transilvania-quantum.com

Andrei Muntea

amuntea@bitdefender.com

Radu Portase
rportase@bitdefender.com

Miruna Rosca

mrosca@bitdefender.com

August 2, 2024

Executive Summary

The impact of quantum computing on the classical computing based cybersecurity
has been discussed extensively over the past 30 years. This led to development of
the so-called post-quantum cryptography. In the same time, relatively little atten-
tion has been paid to the security of quantum computers. This paper examines
issues related to the security of quantum computers and quantum computing pro-
cess. We investigated in this direction trying to identify possible vulnerabilities and
attack vectors in the most popular quantum computing infrastructures.

We looked at the main quantum computer providers, like IBM and lonQ, and
the different ways their resources could be used by end users. Furthermore, we
analyzed the most popular quantum software development kits, like Qiskit, and
the entire quantum programming workflow they imply.

The result of our analysis is a set of threat models and attack vectors on the dif-
ferent phases of the quantum programming workflow. For some identified attack
vectors we derived proof-of-concept attacks.

In the realm of classical attacks on classical computing resources, in particular,
on quantum computing software stack, including the cloud services that must be
used to let end users access centralized quantum computers, we identified flaws
regarding the way authentication tokens are managed, which make them vulner-
able to being stolen and used to impersonate victim users. In the same class of
attacks, we developed one that corrupts quantum SDKS’ packages to transparently
tamper with end users’ quantum circuits, injecting attacker’s circuits alongside vic-
tim’'s ones and making their presence invisible for the attacked user.

Regarding quantum-based attacks on quantum processing units (QPUs), we im-
plemented a couple of proof-of-concept attacks that try to (1) exploit the quantum
computers’ qubit imperfect reset to infer results of quantum circuits run before the
attacker’s circuit (2) exploit the quantum computers’ qubit imperfect reset to affect the
results of circuits run immediately after, and (3) evaluate impact of qubit cross-talk

Quantum Computing Security 2

effects in multi-tenant scenarios.

By our investigation, we want to raise awareness for both end users, to protect
their data and computers while running quantum programs, and quantum com-
puter providers, to protect their infrastructures against possible attacks.

We make publicly available the code of our experiments at https://github.
com/Transilvania-Quantum/quantum-computing-security-investigations.

https://github.com/Transilvania-Quantum/quantum-computing-security-investigations
https://github.com/Transilvania-Quantum/quantum-computing-security-investigations

Contents

Executive Summary

1

2

Introduction

Quantum Computing Overview

2.1 Quantum Bits, Gates, Circuits and Computers
2.2 Quantum Computer Providers

2.3 Open-Source Quantum Software Development Kits (SDKs)

2.4 Quantum Programming Workflow
2.5 Quantum ComputersToday

Threat Models

3.1 Classical Attacks on Quantum Computing Software Stack
3.2 Classical Attacks on Quantum Processing Units (QPUs)
3.3 Quantum Attacks on Classical Computers
3.3.17 Quantum Algorithms and Security on Internet
3.3.2 Post-Quantum Cryptography
3.3.3 TheTransitiontoPQC
3.4 QuantumAttacksonQPUs

Attack Vectors

4.1 Classical Attacks on Quantum Computing Software Stack
4.1.1 Supply ChainAttacks
4.1.2 Compromised Quantum User's Computer
4.1.3 Untrusted Transpilers
4.1.4 Plain-Text AuthenticationTokens
4.1.5 Man-in-the-Middle (MitM)

11
13
15
17

18
20
23
24
24
25
25
25

Quantum Computing Security 4

41.6 DNS/IPSpoofing
4.1.7 Man-in-the-Browser(MitB)
4.1.8 Denial of Service (DoS)
4.1.9 Untrusted Quantum Providers
4,1.10 Untrusted QuantumUsers
4.2 Classical Attackson QPUs
4.2.1 Attacking QPU Calibration Using the Pulse API
4.2.2 Side-Channel Attacks
4.2.3 SchedulerAttacks
4.3 Quantum Attacks on Classical Computers
4.3.1 Quantum Algorithms
4.4 Quantum Attackson QPUs e
441 The|ll..1) State Initialization Attack
4.4.2 Accessing Higher Energy States Attacks
4.4.3 Readout Attacks in Multi-tenant Environments
4.4.4 Readout Attacks in Single-tenant Environments
445 Cross-TalkAttacks
4.4.6 Shuttle Exploiting in Trapped-lons Quantum Computers . . .

Research, Analysis and Experiments

5.1 Classical Attacks on Quantum Computing Software Stack
5.1.1 Attacking the APl Authentication Tokens
5.1.2 Quantum Circuit Hidden Alteration

5.2 Classical Attackson QPUs e
5.2.1 Attacking QPU Calibration Using the Pulse APl

5.3 Quantum Attacks on Classical Computers

5.4 Quantum Attackson QPUs
5.4.1 Experiments on Qubit Reset Attacks
5.4.2 FaultinjectionAttacks
5.4.3 Exploring the Potential for Cross-Talk Attacks

Reflections on Quantum Computer Related Security

6.1 Importance of Our Investigation

6.2 Attacksand Defenses
6.2.1 Classical Attacks on Quantum Computing Software Stack
6.2.2 Classical Attackson QPUs
6.2.3 Quantum Attacks on Classical Computers

45
45
45
48
50
50
51
51
51
57
62

Quantum Computing Security 5

6.2.4 Quantum AttacksonQPUs 70
Conclusions 72

Appendices 73

1 Introduction

While the impact of quantum computing on the classical computing based cyber-
security has been discussed extensively over the past 30 years, relatively little at-
tention has been paid to the security of quantum computers. This paper examines
issues related to the security of quantum computers and quantum computing pro-
cess. Our main objective is to shed light on the various attack vectors on quantum
computing infrastructures.

Research into the field of quantum computing gained momentum in the 90s
with the discovery of quantum algorithms that could solve some computational
problems faster than classical computers are known to do [6, 29], [81, 80]. To-
day, quantum computers from various suppliers with up to hundreds of qubits
are available to the public. Although quantum computers are unlikely to com-
pletely replace classical computers in the foreseeable future, specific applications
of quantum computers are being investigated in several key areas. In chemistry
and materials science, quantum computers will be used to simulate and calculate
the properties of physical systems more precisely than classical computers ever
could [39]. Promising applications are being investigated for large-scale optimiza-
tion tasks in areas of practical interest such as transport, logistics, or finance [8].
Another area of research that has received a lot of attention in recent years is
performing machine learning with the help of quantum computers [17]. In cyber-
security, quantum computers will one day be used to factorize large integers and
solve discrete log problems that enable cracking classical cryptographic schemes
like RSA, DSA, and elliptic curves [49].

Quantum computers use quantum mechanical effects like superposition, in-
terference and entanglement to perform calculations, unlike classical computers,
which operate within the framework of classical electricity and magnetism. To per-
form a meaningful task, such systems must be shielded from external influences
long enough to execute a quantum algorithm. While quantum computers working

Quantum Computing Security 7

at room temperature are being researched, most existing ones require isolated
environments and special care and maintenance.

Consequently, quantum programs are executed on remote quantum comput-
ers, available to quantum software developers via cloud services. Some phases
of their development workflow are performed as classical computation either on
end users’ computers or under user’s account on various commercial cloud plat-
forms. Classical data transfers also take place between end users and remote
guantum computing infrastructures. This way of developing and running quan-
tum programs could have important implications for the overall cybersecurity of
the quantum computing process.

We investigated in this direction trying to identify possible vulnerabilities and at-
tack vectors in the most popular quantum computing infrastructures. We looked at
the main quantum computer providers, like IBM and lonQ, and the different ways
their resources could be used by end users. Furthermore, we analyzed the most
popular quantum software development kits, like Qiskit, and the entire quantum
programming workflow they imply.

The result of our analysis is a set of threat models and attack vectors on the differ-
ent phases of the quantum programming workflow. We classified threats relative
to all possible combinations of computing resources an attacker could use and
targets he could aim for: (1) classical attacks on classical computing resources, in-
cluding in particular the quantum computing software stack of interest for us here;
(2) classical attacks on quantum processing units (QPUs); (3) quantum attacks on
classical computers; (4) quantum attacks on QPUs. We defined threat models for
each such a class and tried to identify attack vectors for them. For some identified
attack vectors we derived proof-of-concept attacks, like (1) stealing end user authen-
tication tokens; (2) corrupting quantum SDKs' packages to transparently tamper
with end users’ quantum circuits; (3) exploiting the quantum computers’ qubit im-
perfect reset to infer results of quantum circuits run before the attacker’s circuit;
(4) exploiting the qubit imperfect reset to affect the results of quantum circuits run
immediately after; (5) evaluating impact of qubit cross-talk effects in multi-tenant
scenarios. We also researched developing new lattice-based post-quantum crypto-
graphic schemes.

By our investigation, we want to raise awareness and provide guidance for both
end users, to protect their data and computers while running quantum programs,
and quantum computer providers, to protect their infrastructures against possible
attacks.

Quantum Computing Security 8

Our paper’s is structured in the following way:

Chapter 2 reviews the main quantum computer providers and the quantum
programming workflow;

Chapter 3 defines threat models against today’s quantum computing infras-
tructures;

Chapter 4 describes different attack vectors on the quantum programming
workflow;

Chapter 5 details theoretical research and experiments we conducted to val-
idate the proposed threat models;

Chapter 6 recommends some best practices in order to reduce exposure to
the threats we identified;

The last section concludes the paper.

2 Quantum Computing Overview

2.1 Quantum Bits, Gates, Circuits and Computers

Current computers, which we will refer to as classical computers, operate within
the limits of classical physics, which assumes that a system can be in only one
observable state at any given moment. Quantum physics, however, says that a
system can be in a superposition of multiple classical states. Such a state is called a
quantum state and can be expressed as a vector of amplitudes «;, each correspond-
ing to a classical state S;, as if the system is in all those states at the same time.
Equation 2.1 illustrates the formula for a quantum state. The amplitudes «; are
complex numbers.

N
T) =) [S;) (2.1)
=1

Quantum computing applies concepts and knowledge from classical computer
science while exploiting phenomena specific to quantum physics with the purpose
of executing a computation. The devices build with such a purpose are called quan-
tum computers.

In classical computers, the minimum unit of information is represented by a
bit. A bit can have one of two possible values, 0 and 1, which usually correspond
to the absence or presence of a voltage across an electrical circuit in a classical
CPU. For quantum computers the minimum unit of information is called a quan-
tum bit or qubit. Physically, a qubit is a system having two energy levels. In this
case, the physical system can be either a two-state system provided to us by na-
ture, such as the spin of an electron or an atomic nucleus, or a physical system
engineered by humans, such as the subspace of the two lowest energy levels in
a macroscopic quantum system like a superconducting circuit. Regardless of its

Quantum Computing Security 10

physical realization, the state of a qubit is generally a quantum state. Using the
bra-ket notation a qubit's basis states are noted |0) and |1), while its quantum state
is a superposition of the two, like in Equation 2.2.

(W) = |0) + B [1) (2.2)

Measuring a qubit always provides one bit of information, by returning one of
the two basis states. In the conventional physics interpretation, when a quantum
bit is measured, its state collapses randomly from a superposition state into one
of the two available basis states: |0) or |1). |a|? is the probability of measuring
the state |0), while |3]? is the probability of measuring the state |1). The sum of
probabilities must be one |a|? + |3]* = 1. This is called the normalization condition.

In ket notation, the basis states for a two-qubit system are |00), |10), |01), |11).
In general, the state of a system with N qubits has the dimension 2V and its basis
states can be represented either using N digits kets |14z . . . gn) where ¢; € 0,1 or
via column vectors with 2 complex entries.

Qubits alone are useless for computing unless you can change their state. This
could be done by applying a quantum gate to one or more qubits, which can be
categorized as T-qubit (i.e. one-qubit) or n-qubit (i.e. multiple-qubit) gates, re-
spectively. In physical terms, a quantum gate usually means that electromagnetic
pulses are applied to the physical system that implements the qubits. An exam-
ple of a one-qubit gate is the X gate used to transform the state |0) to |1) and vice
versa.

The reason why quantum computers can perform different algorithms than
classical computers are given by phenomena like superposition, interference, and
entanglement. Superposition is a basic property of quantum physics and has al-
ready been mentioned. Interference makes it possible that at the end of a compu-
tation, the states corresponding to the answer we want to find will be enhanced
while the probability of measuring other states is suppressed. Entanglement is dif-
ficult to explain in a few words, but it manifests itself as correlations among qubits
that have no classical analogue. Entanglement between two qubits can be created
using a Controlled-X gate.

Having a universal gate set at our disposal, we can express any quantum com-
putation in terms of a quantum circuit, where gates are applied from left to right.
While there are other ways to reason about quantum algorithms [98], in quantum
computing practice a quantum circuit is the preferred abstraction used to describe
how quantum gates are applied to qubits to perform a computation.

Quantum Computing Security 11

For a more thorough discussion of quantum computing the reader is referred
to [88] for an elementary introduction and to [45] for an in depth treatment.

2.2 Quantum Computer Providers

Several quantum hardware producers have established themselves as key players
in the quantum computing market. Many provide students, researchers, software
developers and the public in general with access to their infrastructure, enabling
users to upload and execute circuits. This access is typically facilitated through sub-
scription models or free limited monthly usage allowances. Many of these com-
panies have chosen to embrace the open-source community by making relevant
parts of their software stack publicly accessible. This approach ensures that, for
those interested to experiment with quantum computing, the intricate hardware-
specific instructions are abstracted away, simplifying the utilization of quantum
computing resources, but it comes with an associated risk as an attacker might
be more familiar with the code and the framework and could find ways to exploit
them with malicious intentions.

The information in this section reflects the state of affairs at the beginning of
year 2024 and likely will become outdated relatively soon. The list of startups and
companies that are developing quantum computers is growing fast. When trying
to review this list, one needs some principles to organize and help make sense
of it. A very natural criterion is to categorize the quantum hardware providers
by the kind of technology used to build the quantum bits. Furthermore, it makes
sense to start with the technologies that are more advanced at this moment and
have attracted more users. We do not know which technology or technologies will
prove most viable in the long run since each technology has its own advantages
and disadvantages and scaling a quantum computer to hundreds of thousands or
even millions of physical qubits is uncharted territory.

Superconducting quantum bits [34, 35] provide one of the most advanced tech-
nologies available today. A device with more than 1000 quantum bits has been
unveiled recently by IBM [15]. Other companies using this technology are Google,
Rigetti, Oxford Quantum Circuits, IQM, Amazon Web Services, Alice & Bob, Nord
Quantique, Quantum Circuits Inc, SEEQC, and D-Wave. Today IBM offers public
access via the IBM Quantum Platform to many of its quantum computers. Using
Azure Quantum users can access devices from Rigetti and Quantum Circuits Inc.
Using Amazon Braket users can access devices from Rigetti and Oxford Quantum

Quantum Computing Security 12

Circuits. IQM offers access to its systems via T-Systems Quantum Cloud. While se-
lected users can submit jobs to Google Quantum Computing Service which offers
access to Google's quantum devices, public access from Google is not available at
the time of writing.

Devices based on trapped ion architectures are developed by companies like:
lonQ, Quantinuum, AQT, Quantum Factory, Oxford lonics and Elegtron. At this mo-
ment lonQ, Quantinuum and AQT offer public access to their quantum computers
and various simulators either directly (lonQ) or via cloud platforms like Amazon
Braket (lonQ), Azure Quantum (lonQ, Quantinuum) or T-Systems Quantum Cloud
(AQT). The number of qubits available at this moment is of the order of only tens
of qubits, but devices built around such platform tend to have larger quantum vol-
umes, which is a synthetic metric that characterize the overall performance of a
Quantum Processing Unit (QPU) [22].

Photons can be generated having two different polarization states, which pro-
vides a very accessible method to implement a qubit. Quantum computers that
use photons as qubits are in principle easier to scale but need sophisticated tech-
niques for implementing two-qubit quantum gates because photons do not inter-
act strongly with each other [82]. Xanadu develops QPUs taking advantage of tech-
nology named measurement-based quantum computing [12] while PSIQuantum
uses a technique they name fusion-based quantum computing [5]. Such comput-
ers can be used to implement familiar gate-based quantum algorithms but can
also be used to develop specialized algorithms '. Some other companies that
develop quantum devices based on photonics technologies are Orca Computing,
Quandela, Quix Quantum, and TundraSystems Global. Today, Xanadu offers pub-
lic access to simulators and their quantum computers with up to a couple of hun-
dred qubits via the Xanadu Quantum Cloud platform.

Another technology that has achieved promising results is based on neutral
atoms, which uses lasers to cool and manipulate neutral atoms confined in optical
traps [99]. A qubit is implemented by different energy states of the same atom
and the prospects for scaling up such systems are promising. Similar to ions in
trapped ions architectures, atoms can be shuttled, which enables implementation
of direct two-qubit gates between any two qubits. This makes gates relatively slow,
effect which is partially offset by longer coherence times. A few companies de-
veloping quantum computers using neutral atoms are PASQAL, Atom Computing,

"Both gate-based and measurement-based quantum computers are universal computers,
meaning that they can be used to implement any arbitrary computation.

Quantum Computing Security 13

ColdQuanta, Nanofiber Quantum and QuEra Computing. Today, QuEra offers ac-
cess to 256 qubit quantum devices via Amazon Braket while PASQAL offers access
to 100 qubit quantum devices via Azure Quantum and PASQAL Cloud Services.

2.3 Open-Source Quantum Software Development Kits
(SDKs)

Because the landscape of quantum computing software is evolving rapidly, we do
not try to provide a comprehensive review here. We will restrict ourselves to dis-
cussing briefly several open-source SDKs that are popular today. Besides being
general-purpose quantum programming frameworks, some of these provide ad-
ditional libraries and support for approaching problems of practical interest with
the help of quantum computers. These can be categorized into four broad appli-
cation areas: (1) solving complex optimization problems, (2) simulating the prop-
erties of molecules and materials (3) machine learning and (4) finance. Many of
those packages provide detailed tutorials, code samples and other kinds of sup-
port materials. These constitute valuable learning resources for anybody trying to
learn the basics or to further expand their knowledge in quantum computing.

Qiskit [63] is a Python quantum SDK created by IBM and, according to the Uni-
tary Fund's State of Quantum Open Source Software 2023 survey [93] is the most
popular open-source platform for quantum computing. It implements most of
the functionalities needed for developing quantum programs and combines good
feature coverage with excellent learning resources. At the moment of writing, IBM
provides free public access to several 127 qubit quantum computers. Besides the
general purpose software package Qiskit itself, there are specialized sub-packages
in Qiskit for applications in chemistry and material science [66], machine learn-
ing [65], optimization problems [67] and finance [64]. Using Qiskit users can sub-
mit quantum programs to devices and quantum simulators provided by IBM, lonQ),
Quantinuum, Rigetti, AQT, QuTech, and PASQAL.

The Qiskit framework started in 2017 with OpenQASM [21] which was initially
intended to be a circuit description language. Since then, OpenQASM has become
the de facto standard used for communicating circuits among libraries and quan-
tum software packages published by different authors. In its latest version, Open-
QASM 3.0 [20], besides describing quantum circuits, provides support for pulse
based quantum programming and declaring fragments of classical code that run

Quantum Computing Security 14

"near" the quantum computer. Here proximity is defined by the fact that the classi-
cal code is run by controllers physically near the QPU, but also because it can run
within the coherence time of qubits. Thus, today the OpenQASM language has
evolved into an intermediate representation of quantum code. Python code de-
scribing circuits is typically compiled into OpenQASM code before being compiled
further into representations that can be executed on QPUs and their controllers.

Strawberry Fields [85] from Xanadu is an open-source cross-platform Python li-
brary for simulating and executing programs on quantum photonic hardware. Be-
sides Strawberry Fields, Xanadu has created PennyLane which is an open-source
platform targeting applications of quantum computing in machine learning and
chemistry. PennyLane provides a set of plugins [50] that integrate the develop-
ment environment with Qiskit, Amazon Bracket, Cirq and Microsoft SDK. Besides
Xanadu devices users of these software packages can submit quantum jobs to IBM,
lonQ, Quantinuum, Rigetti, AQT and Quantum Inspire, plus a number of quantum
simulators.

Cirq [18] is a Python open-source SDK from Google Quantum Al. Google has
also created TensorFlow Quantum [91] a library for hybrid quantum-classical ma-
chine learning and OpenFermion [48], an open-source package for doing chem-
istry using quantum computers. Cirq users can submit quantum programs directly
to AQT, PASQAL, lonQ and Rigetti. Moreover they can send circuits to AQT, PASQAL,
lonQ, Rigetti, and Quantinuum via Azure Quantum and access simulators fromvar-
ious companies.

Tket [95] is an open-source SDK from Quantinuum for the creation and execu-
tion of quantum programs. Being hardware-agnostic it provides extension mod-
ules that target multiple quantum platforms like Quantinuum, IBM, Rigetti, AQT or
IQM. It also facilitates access to the Microsoft Azure and Amazon Braket cloud plat-
forms. Additionally, it provides an extremely performant transpiler and optimizer
for quantum circuits.

Forest SDK is an SDK created by Rigetti Computing. Part of this package is
Pyquil [58] an open source Python library for quantum programming and Quil [70]
a quantum instruction language that can be used to write programs that can be
executed on the quantum devices and simulators from Rigetti.

Amazon Braket is a cloud based computing service from Amazon. Amazon sup-
ports the Amazon Braket SDK [2] an open source framework for quantum comput-
ing written in Python that enables access to devices and simulators from Oxford
Quantum Circuits, Rigetti, lonQ and QuEra.

Quantum Computing Security 15

So far we have discussed mostly Python libraries, but there are programming
languages dedicated to quantum computing. A representative example is Q# from
Microsoft [60], a high-level, open-source quantum programming language. Pro-
grams written in Q# can be run via Azure Quantum on quantum computers from
lonQ, Qunatinuum, PASQAL, Rigetti and QCIl. Another feature of Q# worth men-
tioning is that it can be compiled into Quantum Intermediate Representation (QIR) [62],
an LLVM [92] based intermediate representation for quantum code. Programs
written in a language that targets QIR can be run on any quantum device that sup-
ports it.

2.4 Quantum Programming Workflow

In principle, a quantum program could be a piece of code written in a dedicated
programming language like, for example, Q#. Today, in practice, a quantum pro-
gram is most often represented by some module of code developed in Python us-
ing a dedicated Python SDK like those mentioned in Section 2.3. In general, such
a Python module contains specifications in code for both classical and quantum
computations. Quantum computations are laid out in the form of quantum cir-
cuits which can be written directly using the Python programming language, cre-
ated using a dedicated quantum circuit description language like OpenQASM, or
generated dynamically using some API provided by the Python SDK.

The classical computation runs locally either directly in a Jupyter Notebook on
the user's PC or under the user’'s account on some cloud platform like Azure Quan-
tum or Amazon Braket. It could contain simple code helping set up the circuits the
quantum program needs or more elaborate code needed for hybrid quantum-
classical routines like VQE [94], QAOA [9] or quantum assisted machine learning.
The hybrid quantum-classical algorithms run iteratively where quantum circuits
are sent to the quantum computing platform, processed remotely and results sent
back to the classical client. After some extra processing, new circuits are generated
and the cycle is repeated until a predefined condition is met and the quantum
program terminates. What is transferred between the user and the quantum de-
vice are always quantum circuits and for this purpose, one uses a data exchange
formats like JSON or the QPY serialization format [68]. Very schematically, every-
thing a quantum computer is doing remotely, is to initialize the qubits to |0) state,
execute the quantum circuits, measure the results for those qubits we want to
measure, and report the results back to the user.

Quantum Computing Security 16

A generic quantum circuit cannot be run unmodified on a quantum computer.
The reason is that quantum computers provide a limited set of physical gates,
which may not coincide with the set of gates used to implement a quantum algo-
rithm as a circuit. For such a set of physical gates one needs a minimum of several
one-qubit gates and at least one two-qubit gate like for example the Controlled-X
gate. Also in certain quantum computing architectures, the connectivity between
qubits is limited which does not permit the implementation of two-qubit gates be-
tween arbitrary qubits. More complicated circuits containing chains of Swap gates
must be used to entangle remote qubits. The process of rewriting a quantum cir-
cuit in a form suitable for execution on a quantum computer is called transpiling.
This operation can use significant amounts of memory and take long processing
times for larger circuits and is usually run locally by the user before the circuit is
sent to the quantum computer. This is also the moment where the circuit is opti-
mized. The primary target of optimization is to reduce the depth of circuits which
implies optimizing gate layout and reducing the number of gates, especially the
number of two qubit gates.

To understand the entire lifecycle of quantum code, we will take a closer look
at the operations performed remotely on the quantum computer provider side.
There, quantum circuits belonging to a job submitted by the user are received and
wait in a queue until they are scheduled for execution. Most of the circuits are
static but OpenQASM provides support for specifying simple routines of classical
code that are executed "in real time", within the coherence time of the qubits, by
the QPU controllers which could be for example FPGA devices. Next, the circuits
are converted to specifications for electric pulse signals which may be microwave
pulses in the case of superconducting qubits or laser pulses for trapped ions and
neutral atoms. In principle, a pulse program constitute a virtual execution model.
This virtual execution model is then compiled by a classical coprocessor into the in-
struction set architecture (ISA) of the underlying control hardware. Then the circuit
is executed on the particular QPU chosen by the user when he submitted the job
to the quantum provider. After the circuit execution has finished, the results are
obtained by performing a quantum measurement on a subset or, on all the qubits.
Because quantum algorithms are probabilistic, a circuit is run multiple times. The
user specifies this as number of shots for his job. As far as we know, all shots run
in sequence on the QPU. If a user specifies 1000 shots, 1000 circuits will run in
series and are not interleaved with circuits from another user. After all shots have
been run, the results for the job are aggregated and sent back to the user.

Quantum Computing Security 17

2.5 Quantum Computers Today

The quantum devices existing today are referred to as NISQ quantum comput-
ers, where NISQ stands for Noisy Intermediate-Scale Quantum [54]. One major
feature which the current generation of computers does not support is quantum
error correction. The lack of quantum error correction means that only limited
depth circuits can be executed before the computation is overwhelmed by the
inherent noise in the quantum gates. The errors for the best quantum gates to-
day approach 0.1% for two-qubit quantum gates and are one order of magnitude
smaller for single qubit quantum gates. In the future, when quantum error correc-
tion will become available, large depth quantum circuits will be run with an overall
error that can be exponentially suppressed. In order to enable quantum error cor-
rection, hundreds or thousands of physical qubits will be needed to implement a
logical qubit. An error corrected device having on the order of one million physi-
cal guantum bits and one thousand logical qubits will provide results that cannot
be matched by the classical computational methods. While waiting for these ma-
chines to become a reality, error mitigation [13] is a technique that can in principle
be used to extract useful results using the NISQ quantum computers existing to-
day. Error mitigation improves the accuracy of results obtained using current de-
vices with the price of running more circuits. This price is in principle exponential
but, within a certain domain in circuit size and complexity, it can be used to obtain
precise results as it has been proved in a recent landmark paper from IBM [33].

3 Threat Models

We try to identify in this chapter the possible cybersecurity threats that existin a
computing environment that provides access to quantum computers. Aswe saw in
the previous chapters, the existing quantum computers are expensive and need
specialized maintenance, so they are hosted by quantum hardware companies
and are made accessible to end users via cloud services.

Quantum computers are needed in an attempt to provide better solutions to
difficult computational problems than classical algorithms. Most of the problems
that we know of, that can currently be addressed by quantum-assisted compu-
tation are fairly well-understood and relatively specialized. Notwithstanding, the
field is constantly evolving, so new quantum computing algorithms could still be
developed. In this context, keeping confidentiality of such new algorithms and
their input data could be critical, especially in competitive domains like pharma or
finance.

By sending to remote cloud services quantum circuits which model quantum
algorithms and their input data, we expose them to different threats, like being
stolen or tampered with. This could happen on communication channels while in
transit, in cloud or even on quantum computers, if an attacker succeeds compro-
mising one of those resources. In theory, they could be also stolen by untrusted
cloud providers. Consequently, the problems the circuits solve could be inferred
by the attacker.

On another perspective, malicious users could try to use quantum computers
for malicious purposes. It is well known that in the post-quantum age, quantum
computers could be used to break, at least partially, the classical cryptographic
schemes, but we expect them to be used for wider malicious purposes also, like
attacking the quantum circuits and other computations users may run on a quan-
tum device.

In the arena of cybersecurity, classical and quantum computers interact at sev-

Quantum Computing Security 19

eral contact interfaces, defining an emerging landscape of cyberattacks, which we
try to classify in Figure 3.1.

CIassmilnAttacks Classical Attacks
on
Quantum Computing
QPU
Software Stack
Quantum Attacks Quantum Attacks
on on
Classical Computers QPU

Figure 3.1: The interplay between classical and quantum computing in the arena
of cybersecurity

Classical attacks on quantum computing software stack, which is composed by
classical computing resources, can target user input data or user quantum pro-
grams, which may contain sensitive intellectual property (IP) in the form of custom
quantum algorithms. Furthermore, an attacker can alter the quantum circuits a
user may wish to run or modify the number of shots or the maximum credits the
user assigns to a particular computation. Such issues and others in the same cat-
egory represent a high-impact attack surface on quantum computation, which is
analyzed in Section 3.1, Section 4.1, and Section 5.1.

Classical attacks on quantum processing units (QPUs) can take the shape of spe-
cially designed pulses (for those quantum devices that support pulse API), which
could be used, for example, to alter a quantum device’s calibration. Another clas-
sical attack vector on a QPU may be provided by side channels like the radio fre-
guency (RF) signal originating from the microwave pulses executed on a quantum
device. This could be used to steal quantum circuits. Attacks of these types are
discussed in Section 3.2, Section 4.2, and Section 5.2.

Quantum attacks on classical computers is currently understood as the possibil-
ity of using quantum computers to break classical cryptographic schemes, com-
promising digital signatures, or improving brute-force attacks on symmetric cryp-
tography. It has been discussed in this form extensively in literature [49] and is

Quantum Computing Security 20

one of the discoveries that contributed to the rise of interest in quantum com-
puting [80, 29]. While such attacks are not yet viable using today's quantum com-
puters, future-proofing security of communication on the internet may already be
desirable for sensitive data like medical records, which need to be kept secret for
a long time. A solution to this problem is so called post-quantum cryptography. We
describe cybersecurity issues in this category in Section 3.3, Section 4.3, and Sec-
tion 5.3.

Quantum attacks on QPUs are somewhat specialized and have a limited impact.
However, what may seem surprising at first sight is that such attack vectors exist at
all. They could take the form of a malicious quantum circuit running on a quantum
computer, aiming to infer the results of other circuits run on the same quantum
computer, influence the execution of other circuits, or reverse engineer the QPU.
We discuss such attacks in Section 3.4, Section 4.4, and Section 5.4.

3.1 Classical Attacks on Quantum Computing Software
Stack

In this section we try to identify different types of attackers that could target a quan-
tum computing infrastructure and its environment. It is, also, important to under-
stand what advantages an attacker could take from attacking such infrastructures
and what kinds of malicious actions could perform on it.

Let us see, firstly, what an attacker could obtain by attacking a quantum com-
puting infrastructure, which are the possible targeted assets and how an attacker
could exploit them.

1. One obvious thing an attacker could do is to steal confidential data that lives
in the quantum computing infrastructures. This could be, on one hand, end-
users’ data, like authentication credentials, quantum circuits, their parame-
ters and results. The latter, in particular, are considered importantintellectual
property (IP). On the other hand, leaked data could belong to quantum com-
puter providers and could consist in details about the quantum hardware’s
architecture and configuration. Such details could also be considered intel-
lectual property or, even if not really confidential, could help the attacker
develop other kinds of attacks.

2. Another advantage an attacker could get from quantum infrastructures is to

Quantum Computing Security 21

make unauthorized use of quantum resources. Running an attacker’'s quantum
circuit on behalf of an unaware victim user, using her paid cloud resources and
quantum running time is an example of this kind.

3. An attacker could be also interested in tampering with an end user’s circuits or
influence their execution. The purpose of such an attack is to affect, or even
control, the results of victim user’s circuits, indirectly affecting her business
decisions.

4. Finally, an attacker could be pleased to only perform a denial of service (DoS)
attack. This could make quantum resources unavailable to their users, af-
fecting the business of both quantum computer providers and their users.
Examples of this kind could be: (1) exhaust a user’s cloud or quantum run-
ning time credit; (2) overload the quantum job queues maintained in cloud
infrastructures, slowing down the advance of job schedulers and, indirectly,
delaying indefinitely results awaited by quantum users; (3) decalibrate qubits
or damage QPU of quantum computers, making them unavailable to quan-
tum users.

In Section 2.4 we saw that different components of a quantum program are
run in different places, i.e. on the end user’'s computer, in cloud or on quantum
hardware. Data, e.g. quantum circuits and results, could be also stored, processed
or in transit between those places. Let us see where the attacker could be posi-
tioned relative to that places, quantum programs’ components and data and what
malicious actions he could perform on them. We try to cover all possible types of
attackers and corresponding attack models, even if some of them are not necessar-
ily specific to quantum computing infrastructures, but could target any other kind
of computing infrastructures.

1. The attacker could be an anonymous user in internet. In such a case, the at-
tacker has no a priori advantage over any component of the quantum in-
frastructure, so could only try to target anyone of them using classical attack
methods. For example, he could target quantum users through social engineer-
ing attacks, trying to trick them disclose confidential information or could sim-
ply search for secret data publicly exposed by mistake. Quantum users could
be targeted indirectly, through supply-chain attacks, tricking them download
and use malicious quantum SDKs. The attacker could also target the cloud
services used to access quantum computers and exploit them if vulnerable

Quantum Computing Security 22

(e.g. brute force, broke or avoid flawed authentication, privilege escalation,
steal information) as an unauthenticated or authenticated user, or once au-
thenticated, target the quantum hardware (e.g. steal architectural details, de-
calibrate or perhaps even damage QPUs, steal or influence results of other
user’'s quantum circuits).

. A relatively small variation of the internet attacker is the /ocal network at-
tacker, i.e. an attacker in the same local network with a quantum comput-
ing infrastructure’s user. In addition to the attack capabilities mentioned at
item 1, an attacker of this type could also monitor the network traffic between
the targeted user and quantum cloud services or could even try to act as
a man-in-the middle. If the communication channel is not cryptographically
protected, the attacker could steal confidential information or tamper with
the transferred data.

. Another kind of attacker could be even closer to an (unaware) quantum com-
puting infrastructure’s user, controlling in some way, partially or completely,
the user’'s computer. Let us call such an attacker the compromised user-system
attacker. There could be more variants of such an attacker, depending on
how much power the attacker has over the compromised user's computer.
For example, the attacker could act remotely, through malicious software in-
stalled on user's computer, or physically, having access to an unattended
computer or a stolen one. When acting remotely, the attacker could run
malicious code in an unprivileged or a privilege process. The malicious code,
also, could provide the attacker a limited functionality (e.g. trying to escape
installed security solutions) or a powerful one. Obviously, a compromised
user-system attacker will mainly target user’'s data and processes, trying to
steal confidential data or tamper with his victim’s circuits and results.

. The attacker could also be closer to the quantum cloud services or even
to quantum computers, i.e. in a position that gives him some advantages
over those resources. Let us called such an attacker compromised-cloud at-
tacker and compromised quantum-computer attacker, respectively. Like a com-
promised user-system attacker, the compromised-cloud attacker could have
more or less privileges over the cloud services, depending on which cloud
services, resources or processes he controls, could have remote or physi-
cal access to cloud and quantum hardware, could be a sysadmin or just an
outside intruder. However, an attacker like that has more power and attack

Quantum Computing Security 23

capabilities than the other types of attackers, and, also, could compromise
more users and their data. An attacker with physical access to cloud or quan-
tum hardware could perform even more sophisticated attacks, making really
difficult to preserve the confidentiality and integrity of quantum user’s data.

3.2 Classical Attacks on Quantum Processing Units (QPUSs)

Some quantum hardware providers like those developing superconducting qubits
expose programming APIs that help the user specify the implementation of quan-
tum gates at the pulse level. This allows users to create pulse schedules tuned to
the physical characteristics of each qubit and extract the maximum performance
out of a QPU. However, this opens up the possibility that a user can leverage this
feature to achieve unexpected results, like altering the calibration parameters of
qubits in the case of superconducting quantum computers. Such an attack re-
quires running long pulses at frequencies distanced from the qubit resonance fre-
qguency, which is a nonstandard usage of the pulse API and can be identified in
software if the pulse schedule is scanned before execution. An attacker would not
gain any direct benefits from executing such an attack, but could deteriorate the
quality of results for other users. Since superconducting quantum computers are
calibrated several times each day, the impact of such an attack is limited to a few
hours. The Josephson junctions used to create a superconducting qubit are known
to age. This leads to a degradation of the junction’s performance. It is not clear to
us if longer lasting effects of such an attack, like damage to the quantum bits, are
possible.

Side-channel provide a different attack surface to quantum computingin a sce-
nario where the attacker has direct or indirect access to quantum computer power
usage. Monitoring the power usage of a computer is method that have been used
for performing side-channel attacks in the case of classical processors [71]. For
a quantum computer the most obvious vulnerability would be the power usage
data from the QPU controllers. The target of such an attack would be to reverse
engineer quantum circuits. In the case of superconducting quantum computers,
this information can be corroborated with the RF signals emitted by the microwave
pulses enacting the quantum gates. While gaining access to such information may
be tempting for some attackers, the next logical step, namely extracting useful in-
formation about the problem approached by the user, is made more difficult by
the fact that these circuits have already been transpiled and optimized.

Quantum Computing Security 24

A different instance of compromised quantum computer scenario would be a
malicious user with access to the hardware provider infrastructure that may assign
inferior hardware resources to the jobs sent by another user. There are various
reasons why somebody would want to do that, like routing higher quality hardware
for his own use. The victim does not control directly the QPU that actually runs his
circuits. He only knows what the provider reports back to him. If the provider is
under the control of the attacker, the information sent to the victim can be manip-
ulated. There are mitigation measures that the victim can perform against such
attacks which are discussed briefly in Subsection 4.2.3.

3.3 Quantum Attacks on Classical Computers

3.3.1 Quantum Algorithms and Security on Internet

The security of most of the modern cryptographic algorithms is based on the hard-
ness of efficiently solving factorization, computing discrete logarithms or searching
for a specific item. While Grover's impact on symmetric encryption schemes such
as AES [56] could be easily countered by doubling the size of the keys, the impact
of quantum algorithms on the RSA [72] public key encryption scheme and on the
DSA [55] digital signature scheme is devastating. As a consequence, when quan-
tum computers will become scalable, the security of our Internet connections will
be completely broken.

When an attacker successfully breaches cryptographic schemes, they can un-
leash a wide range of threats, significantly undermining the confidentiality, in-
tegrity, and authenticity of digital communications and data. Having access to pow-
erful quantum hardware means exactly that. When encryption can be broken, the
attacker can intercept, read, and modify the messages between two parties with-
out their knowledge, potentially leading to data breaches, eavesdropping, and in-
formation theft. If digital signatures are compromised, one can forge identities,
creating or altering digital documents and transactions to impersonate legitimate
users, thereby conducting fraudulent activities. Impersonation attacks, facilitated
by breaking cryptographic authentication mechanisms, enable attackers to gain
unauthorized access to systems, networks, and sensitive resources, posing as le-
gitimate users. This can lead to a wide array of security breaches, including data
theft, system sabotage, and unauthorized transactions, deeply impacting privacy,
financial assets, and operational security.

Quantum Computing Security 25

3.3.2 Post-Quantum Cryptography

Post-Quantum Cryptography (PQC) is a modern branch of cryptography that fo-
cuses on developing algorithms that are believed to remain secure even against
attacks implemented on quantum computers. The US National Institute of Stan-
dards and Technology (NIST), who has been actively involved in standardizing cryp-
tographic algorithms for various purposes, initiated in 2016 a project known as
the “Post-Quantum Cryptography Standardization” [46]. The goal of this project
is to identify and standardize the most efficient cryptographic key encapsulation
mechanisms and digital signatures that stay secure against quantum attacks. The
security of most of the post-quantum proposals is based on the hardness of solv-
ing efficiently computational problems related to lattices, multivariate polynomial
systems, codes or hash functions. The first set of post-quantum cryptographic
standards is expected to be released during 2024 [47].

3.3.3 The Transition to PQC

Once the standardization process will be complete, organizations and industries
will have to adopt new cryptographic algorithms to ensure the long-term secu-
rity of their systems in the post-quantum era. The transition from current cryp-
tographic algorithms to post-quantum algorithms is expected to take time, as it
involves updating protocols, systems, and infrastructure. It is crucial for organi-
zations to be aware of the potential risks posed by quantum computers and to
plan for a smooth transition to post-quantum cryptographic solutions. NIST, in
collaboration with other US agencies like the National Security Agency and the Cy-
bersecurity and Infrastructure Security Agency, encourages early planning for the
migration to post-quantum cryptographic standards. In pursuit of this goal, they
have released a Quantum-Readiness Roadmap [69].

3.4 Quantum Attacks on QPUs

The research conducted to date on quantum-on-quantum attacks is based on as-
sumptions about how quantum systems will be used in the future. Although quan-
tum computers with over a thousand qubits exist today we do not yet know what
usage patterns will prevail when quantum computers will become commercially
mature. Accessing quantum computers is similar to the accessing high-performance

Quantum Computing Security 26

computing resources: service providers host quantum systems and provide access
to them as a service. This is indeed the case for almost all systems in operation to-
day. Users typically submit a job containing quantum circuits to a cloud endpoint,
and the service provider queues the job for asynchronous execution. The user can
monitor the progress of the job and retrieve the results once the job is completed.
Today queue times are rising and can be impractical as well as unpredictable. This
is because the systems available for this kind of computation are scarce compared
to the rising demand. For this reason, it is likely that service providers will move to-
wards a multi-tenant, parallel execution model. This means that multiple users will
be able to execute their jobs on the same quantum system at the same time. This
will increase the utilization of the systems and reduce queue times. However, this
also means that on quantum chips multiple circuits may run simultaneously. This
significantly increases the potential for attacks. Almost all research on quantum
attacks on QPUs assumes a multi-tenant environment [77, 23]. In this paper we
also present new quantum attacks that can be carried out in a single-tennant sce-
nario. For executing such an attack, the attacker and the victim must share some
quantum resources or find a method to use one’s quantum resources to influence
the other’s.

Many technologies compete to be the dominant one in the race to build a scal-
able quantum computing industry. From a theoretical point of view, to make good
qubits, a technology must satisfy a set of criteria introduced by David DiVincenzo,
now known as the DiVincenzo criteria [27]. From an economical point of view, the
winning technology must not be prohibitively expensive to manufacture. From an
engineering perspective, it must be scalable, reliable, and, if possible, reuse estab-
lished technologies, like semiconductor processing techniques. We can add to all
of these that the winning technology must be made secure and invulnerable to at-
tacks. Not all technologies have been assessed from a security perspective. To the
best of our knowledge, only superconducting qubits and trapped ions have been
studied in this regard. It is likely that at this early stage of the quantum computing
evolution, each technology has attacks specific to it.

In superconducting technology, qubits are made up of electrical circuits that
are cooled down to temperatures close to absolute zero. The qubits are then con-
trolled by microwave pulses. In these quantum chips, qubits are laid out on a
single plane. This means there is limited connectivity between them. Each qubit
can only be entangled with its direct neighbors. Another aspect of this technology
is that the same physical qubits are reused for all quantum programs that run on

Quantum Computing Security 27

the chip. This means qubits need to be reset to a reference state before they can
be used again so that each program starts with a clean state [35]. These particu-
larities of superconducting technology open up the quantum chip to attacks that
are not possible on other technologies. For example an attacker could take advan-
tage of unwanted interference between qubits either to inject noisy information
or extract useful information [75]. This would be an attack based on crosstalk ef-
fects. Another form of attack on superconducting qubits could take advantage of
the fact that the qubits are reused and the reset operation to the |0) state after
each circuit run is critical for the correct operation of the system. If the reset op-
eration is imperfect, residual information from the previous circuit could leak into
the subsequent circuit. A malicious user could take advantage of this and either
inject information into the circuit that runs after his [89] or read information from
the previous circuit.

Intrapped ion technology, qubits are made up of individual ions that are trapped
in a vacuum chamber and manipulated using lasers. The qubits are grouped in ion
traps in which all qubits connected to each other. This means that any qubit can be
entangled with any other qubit. To perform entanglement between qubits in sep-
arate traps the ions are shuttled between them. The shuttle operation ads energy
to the system and can lead to decreased fidelities on operations performed on all
the qubits in the traps. Assuming the ions in the same trap can belong to different
users, an attacker could take advantage of this and try to maximize shuttling such
that a victim that owns qubits in the same traps will be affected [76].

4 Attack Vectors

4.1 Classical Attacks on Quantum Computing Software
Stack

4.1.1 Supply Chain Attacks

Given that many open-source SDKs dedicated to quantum program development
are actively evolving, they are typically installed within a Python virtual environ-
ment. This practice is adopted because these SDKs undergo frequent updates
and modifications. To use an SDK the user must install it, which can be done using
the following methods:

1. clone the repository that contains the SDK's code using a tool such as Git, if
the SDK is public;

2. use the Pypi [57] platform to install the SDK using pip tool.

Pypi platform can be used by any user to upload Python packages. The up-
loaded package is not validated, therefore an attacker can upload malicious pack-
ages [84], which a victim can download later on. In our case, an attacker can im-
plement and upload a malicious package that is supposed to be a plugin or a tran-
spiler for an SDK. A user can install this package believing it to be a legitimate one,
giving the attacker the possibility to collect sensitive data or even compromise the
victim's computer. Attacks of this type are presented in [19], where the malicious
package is used to collect data about the victim, execute commands on their ma-
chine or even track their activity.

Quantum Computing Security 29

4.1.2 Compromised Quantum User’'s Computer

This attack vector involves an adversary who is operating on the quantum user’s
computer and possesses the same privileges as the currently logged-in user. Con-
sequently, the attacker benefits of read and write access to the source files of
quantum SDKs. This means they can potentially manipulate or tamper with the
source code, introducing malicious changes that could compromise the integrity
and security of the quantum-related software on the user's machine. Alternatively,
the attacker could attach to the processes running the quantum SDK, hooking cer-
tain functions of them and executing his own malicious code, tampering with the
victim's quantum circuits.

4.1.3 Untrusted Transpilers

Today, there are several third-party transpilers, some very reputable like Pytket [59]
or QBraid [61], and many others perhaps less known. Some of these software
packages promise better performance in terms of the number of two-qubit gates
and the depth of transpiled circuits compared to the compilation tools of stan-
dard quantum software toolkits such as Qiskit or Cirg. The use of untrusted third-
party transpilers, might provide an attacker with the opportunity to steal circuits.
Split compilation [78] and circuit obfuscation methods [87] have been proposed
as protective measures against such attacks. Circuit obfuscation works by insert-
ing dummy gates such as Controlled-X or Swap at strategically defined points in
the circuit marked by barriers before the circuit is sent to a transpiler, and remov-
ing these gates either directly or by adding another Controlled-X or Swap gate at
the known locations before the circuit is sent to a quantum computer. The use of
barriers to mark the possible insertion points of dummy gates is an obvious lim-
itation of this technique, even though this procedure is reported to increase the
number of gates and the depth of the final transpiled circuit by only 5%. Another
security issue with using such tools is the possibility of injecting Trojan attacks.
Subsection 4.4.5 discusses how, in quantum computers shared by multiple ten-
ants, crosstalk effects between qubits can be used to perform fault injection and
even DOS attacks. Such observations are likely theoretical today, but it is possi-
ble that these attack vectors could become a legitimate security concern at some
point in the future.

Quantum Computing Security 30

4.1.4 Plain-Text Authentication Tokens

Token based authentication protocol is used to verify the identity of a user that
wants to connect to a cloud service. It replaces the authentication method based
on user and password.

Some quantum providers use the token-based authentication. For user conve-
nience reasons, quantum vendors implemented mechanisms to store such tokens,
like in a:

1. predefined file-system location;
2. environment variable.

See Chapter 6.2.4 for a detailed description of the authentication mechanisms
used by different quantum providers.

If the token is stored in plain-text, without any kind of encryption, in the ab-
sence of any protection mechanism, an attacker who has any type of access to the
victim's machine can steal this token, without the need for privileged access rights.
Alternatively, if the token is stored directly in the code, there is a high risk to be
leaked when the code is uploaded to public repositories. The theft of an access
token may lead to unauthorized access to critical and confidential information or
services.

4.1.5 Man-in-the-Middle (MitM)

A MitM [7] attack consists in positioning the attacker between two entities that
communicate over a network. This attack is common when the communication
channel is not encrypted. The transmitted information between the user and the
web service can be intercepted or altered.

In our case, when a user sends a quantum program to the cloud service, the
attacker can tamper with the package that contains sensitive information. The col-
lected information can constitute different forms of intellectual property or even
credentials.

4.1.6 DNS/ IP Spoofing

Domain Name System (DNS) is a protocol of the internet that provides a mech-
anism to resolve the human-readable name of a website to the corresponding IP

Quantum Computing Security 31

address. DNS Spoofing attack aims to redirect the user web-request to a malicious
IP address. The attackers can intercept the DNS requests that should resolve the
IP address of a quantum hardware provider and sent back the IP address of a
web-service controlled by them. In this way, every request sent by the user to a
quantum provider will be redirected to that malicious address which can collect all
the data sent by the user.

4.1.7 Man-in-the-Browser (MitB)

MiTB [30] attacks aim to infect a web-browser, with the intention of altering on-the-
fly transactions made by the browser. The malware is installed as a plugin to the
web-browser, thus being able to intercept the data that is sent with any request.

In the case of quantum providers, a MiTB attack can collect and change the
user'’s circuits, credentials or any other sensitive information. An example of such
an attack is described in Subsection 5.1.2.

4.1.8 Denial of Service (DoS)

A DoS attack aims to make a machine or a service inaccessible to its intended users.
This attack involves flooding the target in the way that it triggers a crash or stops
working properly. The cloud services have multiple points where a DoS attack may
occur. One example is flooding the authentication APIs with request until it no
longer responds to the users. This type of attack can cause material damage to
guantum providers because their infrastructure no longer works for a period of
time.

4.1.9 Untrusted Quantum Providers

If an attacker has compromised and controls the cloud services used to get ac-
cess to quantum computers or is an insider attacker managing those services or
the quantum computers themselves, he can access different information regard-
ing quantum customers. Such information could be stored in the cloud, like user
credentials, history of run circuits, obtained results etc., or could be about running
jobs. Quantum circuits and their results could be considered intellectual property,
therefore leaking or tampering with them may prejudice their owners.

Quantum Computing Security 32

4.1.10 Untrusted Quantum Users

From another perspective, considering the virtual attacker a quantum user and the
victim a quantum provider, if the latter might want to keep the confidentiality of
parts of their proprietary SDK run on quantum users’ computers, the former might
try to leak intellectual property. There could be, for instance, a special transpiler,
whose design and functionality its owners want to keep confidential. In such a
case, making it open-source is not an option anymore. Alternatively, providing the
transpiler as a binary to be run on quantum users' computers still exposes it to
reverse engineering.

A malicious quantum user, or a compromised one, as we noted above, could
also tamper with the transpiled quantum circuits that are sent to be executed on
the remote quantum computers. Such a circuit could be built with the purpose
of tampering with the execution of other users’ circuits, reverse engineering the
qguantum hardware or even trying to damage it. Next sections will detail about
such kind of attacks.

4.2 Classical Attacks on QPUs

4.2.1 Attacking QPU Calibration Using the Pulse API

Superconducting qubits are characterized by a number of operating parameters.
Some examples are the qubit resonance frequency which is given by the energy
needed for the transition from |0) state to |1) state, the anharmonicity', qubit co-
herence times, cross-talk probabilities, gate and readout errors. Each qubit has
slightly different parameters due to the fabrication process. Furthermore, these
parameters drift in time due to environmental factors like temperature or mag-
netic fields whose values change slowly with time. Another source of variability
is material defects propagating in the substrate of the superconducting circuit or
even in the circuit itself. This can change parameters of the qubit materials like the
dielectric constant [25].

Superconducting quantum computers are calibrated periodically to account
for these variations. The calibration results are subsequently used by the quan-
tum computer providers for building up pulse schedules that implement quantum

"The anharmonicity is given by the difference between the qubit resonance frequency and the
energy difference between second and first excited state.

Quantum Computing Security 33

gates with maximum fidelity and minimum cross-talk effects. Ideally, these pulses
do not have any effects other than changing the quantum state of the qubits. How-
ever, in real life this is only an approximation because real pulses also dump heat
into the qubits [31]. The qubit dissipates energy [51] by coupling to various sources
of noise like the readout resonator, equilibrium and non-equilibrium quasiparti-
cles [16, 86], trapped vortices [96], two-level fluctuators [43] and other degrees of
freedom in the qubit environment.

We speculate that activating some of these channels can be used to induce
semi-permanent changes in a qubit like altering qubit calibration parameters, pro-
vided that off resonance microwave pulses with increased power and duration are
applied to the qubits.

4.2.2 Side-Channel Attacks

Side-channel attacks use information extracted from computer hardware to infer
information about the computation being run. In the context of quantum compu-
tation, a possible scenario is a rogue insider with access to the quantum computer
enclosure using a device to intercept the radio frequency signals generated by the
microwave pulses enacting the quantum gates. The insider attacker could rely on
this information to reconstruct the circuits run by users. On superconducting ar-
chitectures, the pulses executed for each qubit are tuned to the qubit's frequency
which is different for each qubit. This makes it possible to distinguish pulses target-
ing different qubits. Quantum computer controllers’ power usage might provide
another attack surface that can be used to execute a similar exploit. Since circuits
usually are being run in many shots, always in sequence, information collected
from multiple runs can be consolidated to extract a cleaner signal.

A side channel attack could in principle be executed in the reverse direction
as well, where the attacker might use a device to inject faults in the control or
readout pulses generated by the quantum computer controllers as was suggested
here: [100]. A thorough evaluation of various side-channel attacks relevant for
NISQ computers’ era can be found in [101].

4.2.3 Scheduler Attacks

Scheduler attacks are situations where a malicious entity on the quantum com-
puter side allocates inferior quantum hardware resources to a client while the

Quantum Computing Security 34

client user has no way of knowing what hardware resources have been assigned to
him. Such an attack would result in the attacked side obtaining degraded or even
incorrect results. In [52], quantum physically unclonable functions (QuPUF) are
proposed as protection against such attacks. These work as a challenge/response
mechanism by sending specially designed circuits to the quantum computer. The
result of the execution of these circuits is influenced by the unique hardware char-
acteristics of each quantum device, allowing a user to distinguish between differ-
ent hardware devices.

4.3 Quantum Attacks on Classical Computers

While the available quantum hardware is not yet powerful enough, various algo-
rithms have been already proposed and proven. When the hardware will become
powerful enough in the future, all these algorithms can be leveraged by an at-
tacker in order to challenge the nowadays cryptographic schemes. In this section
we'll discuss some of them and include references for the reader.

4.3.1 Quantum Algorithms

+ Simon’s Algorithm, developed by Daniel Simon in 1997 [81], is a quantum al-
gorithm that solves a specific problem exponentially faster than any known
classical algorithm. It identifies a hidden binary string within a black box func-
tion, showcasing the potential of quantum computers to outperform clas-
sical ones for certain computational problems. Though Simon’s Algorithm
itself does not directly break cryptographic schemes, it laid important theo-
retical groundwork for subsequent algorithms like Shor’s (listed next).

* Shor’s Algorithm, introduced by Peter W. Shor in 1999 [80], represents a sig-
nificant quantum computing breakthrough capable of factoring large inte-
gers. Shor’s algorithm can solve these problems in polynomial time on a
quantum computer, drastically reducing the complexity and time required
to break cryptographic systems which use these methods, for example RSA.

* Grover's Algorithm, devised by Lov K. Grover in 1996 [29], offers a significant
guantum computational advantage for searching unsorted datasets. Unlike
classical algorithms, which require linear time to search through N items,

Quantum Computing Security 35

Grover’s algorithm can find a specific item in approximately square root of
N steps, showcasing a quadratic speedup. This capability is particularly rele-
vant to symmetric-key cryptography, where the security of algorithms like
AES depends on the computational effort needed for brute-force attacks.
Grover's Algorithm effectively halves the bit strength of symmetric keys, sug-
gesting that key lengths may need to double to maintain equivalent security
levels against quantum attacks.

4.4 Quantum Attacks on QPUs

4.4.1 The |11..1) State Initialization Attack

Understanding state preparation and measurement (SPAM) errors is essential for
working effectively with a quantum computer. Most users take for granted that
the qubits are initialized in a well-defined state before a circuit is executed, which
is usually the |0) state. In practice, however, this is not always the case, and some-
times the actual state of certain qubits at the beginning of a computation is not
|0). Itis interesting to see what effect a bit flip has on a quantum algorithm. Most
of the gates used in quantum computers today are imperfect, but small errors
can be handled in different ways. Incoherent errors always creep in, but, on av-
erage, they cancel each other out, and their impact on the outcome of quantum
computations is relatively suppressed. An important observation in this context is
that incoherent errors are mainly caused by the interaction of the qubits with the
environment, leading to the leaking of information into the environment, so the
overall impact of these errors must be kept within certain limits. Otherwise, the
computation is lost. Systematic, coherent errors, on the other hand, do not lead to
a loss of coherence, but add up faster than incoherent errors. Coherent errors can
be eliminated in considerable measure by correct qubit calibration and by careful
tuning of the microwave pulses used to enact the quantum gates.

In contrast to the situation described above, in which the individual errors have
small magnitudes, a qubit that is initialized in the state |1) instead of |0) can signifi-
cantly influence the result of a quantum algorithm. Figure 4.1 shows the results of
running the Grover algorithm on 5 qubits in three scenarios where (1) shows the
results of running an ideal Grover algorithm, (2) shows the results of the same al-

Quantum Computing Security 36

00010 | oooto])
0011 | [| ccort [D
o100 | ootoo | cotoo [
00101 | LN | coto1 [D
o110 | aotto | cotto [
0111 | oot | oot [
10000 | 10000 | 10000 [D
10001 | 10001 | 100 [
10010 | 10010 | woro D
10011 | 10011 || o0 [D
10100 | 10100 | 1100 [
10101 | ;E;g;himy 0.999181 10101] ;?;I:;bilityzn.lssslu 010 [
10110 | 99.92% of @ 10110 | 48.96% of @ oo D
o Ry o) o

Figure 4.1: Results for Grover algorithm on 5 qubits in (1) the ideal case, (2) situa-
tion where a V gate is placed on second qubit before the Grover circuit and (3) the
case where a X gate is placed on second qubit before the Grover circuit

Quantum Computing Security 37

gorithm where on the second qubit a V gate? is applied before applying Grover and
(3) shows the results where an X gate is applied on second qubit before Grover,
simulating the effect of an imperfect qubit reset error. In the ideal situation, the
correct results are returned with 99% probability. In the second situation, the re-
sults are worse, but the state representing the correct result is returned with a
sufficiently large probability (49%). This means that a user can run such a circuit
and extract the right answer, given that he executes a slightly larger number of
measurements. In the third case one can see that the computation is completely
compromised.

Exploiting this phenomenon of failed qubit initialization, an attacker can at-
tempt to compromise the results of a victim executing a job after him. The attacker
must ensure that he leaves the quantum register in state |11..1) to maximize the
likelihood of a qubit initialization failure. With a reasonable probability, the at-
tacker can expect to influence only the first circuit executed after him. Since an
average user runs thousands of shots, the impact of such an attack is limited. A
very simple defense against such an attack would be to ignore the results of the
first shot.

The ibm_kyoto quantum computer from IBM has 127 qubits. The estimated
probability of at least one incorrect reset, given that in the previous run the state
was |11..1), is extremely high. As quantum computers improve, the likelihood of
an initialization error will likely decrease. However, the number of available qubits
will also increase, making the overall probability that such an attack would be suc-
cessful, large enough to be a legitimate concern.

4.4.2 Accessing Higher Energy States Attacks

The superconducting circuits used to build superconducting qubits have been nick-
named artificial atoms [97] because their energy spectra are qualitatively similar
to the energy spectrum of an actual atom and, as with atoms, photons (in this
case microwave photons) can be used to induce transitions between different en-
ergy levels. Since a quantum bit is, by definition, a physical system with two levels,
implementing a quantum bit with superconducting circuits requires access to pre-
cisely two of these energy levels. Typically, the ground state and the first excited
state are used for this purpose, with the ground state corresponding to state |0)
and the first excited state corresponding to state |1). To enact a single qubit gate

2The V gate is the square root of the X gate.

Quantum Computing Security 38

such as the X-gate, which is needed to control transitions between the states |0)
and |1), the qubitis irradiated with microwave radiation at the qubit resonance fre-
qguency. This is usually in the range of 4-8 GHz. The qubit frequency is the energy
difference between the ground and first excited states. The microwave photons
must trigger the transition of the qubit between the two lowest energy levels but
must not excite higher energy states. In principle, this is possible due to the an-
harmonicity in the energy levels of the superconducting qubit. The magnitude of
the anharmonicity is given by the difference between the energy required for the
transition from the ground state to the first excited state and the energy needed
for the transition between the first and the second excited state. This is usually in
the range of 200-400 MHz [34]. While this situation is workable, it is not ideal be-
cause, while microwave pulses that activate the quantum gates can be engineered
to target predominantly transitions between the ground state and the first excited
state, they must be carefully designed to minimize the probability of accessing un-
desired higher energy states.

Pulses represent implementations of quantum gates as analog microwave sig-
nals. Although the pulse-level specifications are not unique to superconducting
quantum bits, we will focus on this technology in this section.

A pulse schedule is a sequence of microwave pulses scheduled in time. The
pulse specifies a microwave signal that oscillates at a particular frequency. In the
case of pulses that activate individual qubit gates, the frequency is chosen to match
the resonant frequency of the qubit. The phase of the microwave signal can be
adjusted. For example, by varying the phase with 7/2, a pulse implementing an
X-gate can be transformed into a pulse implementing a Y-gate. The phase is also
crucial because the Z-gates, are usually implemented exclusively in software by
tracking and adjusting the phase changes [40]. The envelope describes the shape
of the pulse, which changes more slowly. The total area under a pulse is directly
related to the amount of rotation it performs. The optimal shape of the pulse is
close to a Gaussian, but not identical [42, 28]. The smooth shape of the envelope
is chosen to suppress coupling to higher harmonics and prevent the qubit from
transitioning outside the computational sub-space.

An attacker could try to do the opposite and use a pulse that makes the tran-
sition to higher excited states probable. In principle, the second excited state can
be excited directly by a pulse applied at the energy difference between the ground
and second excited state. However, the frequency required for this is high and
probably unavailable on most quantum platforms. Another method to access the

Quantum Computing Security 39

second excited states is to start from state |0) apply a conventional X-gate first and
then use the pulse API to apply a pulsed gate at the frequency corresponding to
the energy difference between the first and second excited state. The frequency
value can be taken from the calibration settings of the device or measured exper-
imentally [14] by running certain circuits. The specific frequency required is less
than the qubit resonant frequency by the amount of qubit anharmonicity and may
or may not be available.

However, there is a more straightforward method to partially access the higher
energy states that an attacker can easily exploit by performing pulses that cou-
ple to higher harmonics. One method is to execute a relatively long pulse at the
qubit resonance frequency, having a rectangular shape. The effects of this attack
are similar to the effects of the attack described in the previous section because
it increases the probability that in the next shot some qubits are not initialized
properly. Our experiments indicate that an attack using a rectangular long pulse
is slightly more effective than the |11..1) state initialization attack, resulting in a
significant probability that multiple qubits are initialized incorrectly. Other exper-
iments where the second excited state is accessed directly are presented in Sub-
section 5.4.2. In principle, the attacker can expect to influence not only the first
circuit run after him, but also subsequent shots. However, the likelihood for this
to occur is exponentially suppressed. Again, a very simple defense against such
an attack would be to ignore the results of the first few shots.

4.4.3 Readout Attacks in Multi-tenant Environments

In readout attacks, the attacker tries to find out the final state of a quantum circuit
belonging to the victim. In other words, to steal the victim’'s measured result. If the
attack is successful, this leaves the attacker with a value in binary format. Even if
this value is the true result that the victim measured, this is not enough informa-
tion to be useful. But if they can corroborate it with other information, obtained
through other means, like what circuit was run, what was the input, what problem
the victim is trying to solve, etc., then this value can be a very valuable piece of the
puzzle.

There have been a couple of readout attacks studied so far, all on supercon-
ducting qubits. One such possible attack is based on a simultaneous multi-tenant
scenario. This is the case where the QPU is shared by multiple users at the same
time. This means different circuits are mapped to different qubits on the chip, and

Quantum Computing Security 40

they can operate and be measured independent of other circuits running in paral-
lel. In such a case, a readout attack was proposed by A. Ash-Saki and S. Ghosh
where they use a qubit that is adjacent to the victim's qubits during measure-
ment [75]. They take advantage of the fact that readout error probabilities are
different for state |1) and |0) and that this probability correlates with the state of
the adjacent qubits. In certain cases, they can infer the results of two adjacent
qubits using a single attacker qubit.

The proposed solution that would fix this vulnerability is for the victim to apply
a randomized set of qubit flips before measurement. An X gate would be applied,
or not, on each of the output qubits right before measuring it. This operation can
then be undone in the post-processing step. Since only the victim knows which
qubits were flipped and which were not, the information obtained by the attacker
becomes irrelevant.

4.4.4 Readout Attacks in Single-tenant Environments

Another type of readout attack that was studied takes advantage of an imperfect
reset operation. This also applies only to superconducting qubits. As we men-
tioned previously, the qubits in a superconducting chip need to be reset after each
run so the circuit that executes immediately after can start with all qubits in the
reference |0) state. The reset operation is not always perfect in practice, and it is
theorized that one can read the information leaked from the previous circuit run.
In [41], the authors tried this with notable results. They added circuits that simply
measure the allocated qubit and found that they can infer the state of the qubitin
the previous run, even when the victim’s qubit was prepared in a superposition.
For this attack to work the malicious user must run his circuit immediately after
the victim’s circuit on every shot. As far as we know this is not the standard way of
operation on current quantum devices.

There are some proposed solutions. One of them involves adding many reset
operations or randomly varying the number of reset operations to make it more
difficult for the attacker to create a model of the reset. Another solution is to detect
attacker circuits before they are run on the QPU and flag them as potential threats.

In Subsection 5.4.1 we describe our own experiment for performing a readout
attack on real-world quantum computing systems that are available today.

Quantum Computing Security 41

4.4.5 Cross-Talk Attacks

Crosstalk is a phenomenon where the application of control signals on one qubit
causes unintended effects on another qubit. Uncontrolled residual couplings be-
tween qubits are a source of crosstalk errors in quantum computers. In the case
of superconducting qubits, such errors are more likely to occur between neighbor-
ing qubits on the same chip, where, due to their proximity, it is difficult to operate
one qubit without affecting the other to some degree. In general, crosstalk errors
occur with varying strengths in all quantum computing platforms, regardless of
technology, due to various physical effects [79]. For example, neighboring control
lines can cause crosstalk between qubits. Crosstalk errors are systematic [83] and
can be mitigated in various ways, such as by developing special pulse shapes and
optimizing pulse scheduling [44, 26].

Using crosstalk effects to execute attacks on a quantum computer was first
proposed in [3]. Taking advantage of the crosstalk effects, a malicious user could
enact a fault injection attack. To carry out such an attack, two users must simul-
taneously share the same quantum computer. The attacker would try to induce
crosstalk between his qubits and the qubits used by a potential victim, creating
entanglement between the two circuits. Such an attack can even be upgraded to a
denial-of-service (DOS) attack if the attacker, having achieved sufficient entangle-
ment, measures his qubits and forces a collapse in the other user’s qubits. Such
a DOS attack is probabilistic and will not always work, but sometimes it will be
successful.

While an attacker does not know in advance which qubits will be assigned to
him, if he submits jobs with small enough circuits, he will increase the probability
that the remaining idle qubits will be assigned to another user. An example of a cir-
cuitimplementing such an attack is shown in Figure 4.2. By applying a Controlled-X
gate, the attacker can create entanglement between his qubits and the victim’s. Of
course, applying a single gate has negligible effects, but the repeated application
of the same gate can significantly increase the effectiveness of such an attack.

Instead of Controlled-X gates, an attacker could also use simple X gates. By
placing an X gate on a qubit next to the victim’s circuit, the attacker will trigger,
with some small probability, a bit flip error on an adjacent qubit. The attack can
then be amplified by using more X gates. For example, the attacker could run a
circuit on one or two qubits containing a long block of X gates.

Crosstalk error rates are not typically reported by hardware vendors in their
device characterization, but can be measured by running specially designed cir-

Quantum Computing Security 42

.
0

o) l [H{x]-o-{x] (x| {xHHu] [x] H
) —{B}-o{u}{x] IE [HH{x] HH El !H
> —{H]-¢-{HHx}-4{x]|{H] [HHx]

Figure 4.2: An example of a crosstalk attack on a circuit implementing the Grover
search algorithm on 4 qubits. The bottom 5 qubits belong to the victim while the
top two qubits are used to mount an attack. In order for this attack to work, there
must be some non-negligible crosstalk effects between the second and the third
qubit

cuits [79]. As quantum computers improve, the rate of crosstalk errors will likely
decrease, making such an attack less effective. However, as the quantum devices
improve, longer circuits will be able to run. As we already pointed out, this effect
can be enhanced by the repeated application of a Controlled-X or X gate on the
same qubits.

For a quantum device that supports pulse control [83], this attack vector can
be substantially strengthened. One of the current methods to implement two-
qubit gates for superconducting qubits is to apply a microwave pulse on one qubit
at the resonance frequency of the other. This is the so-called cross resonance
gate [35]. An attacker can use this principle by applying a pulse to one of his qubits
at the resonance frequency of a qubit owned by another user. Our experiments
performed on the quantum devices from IBM indicate that fairly long pulses can
be applied, greatly enhancing such an attack.

A simple defense is to place a layer of unused qubits between two circuits al-
located on the same chip. This will lower the crosstalk effects since the crosstalk
rates are higher between neighboring qubits. However, this strategy is not per-
fect since crosstalk effects are not restricted to adjacent qubits. A more elaborate
solution was proposed in [24] in the form of a quantum antivirus that would scan
circuits submitted by the user, making it possible to identify potentially malicious
circuits. The way this could work is to identify patterns of redundant gates repli-

Quantum Computing Security 43

cated many times in a larger circuit and flag those circuits. In the same spirit, most
of these patterns can be identified by a transpiler that ignores barrier and delay
instructions and mergers all gates that can be merged logically using simple rules
similar the rules implemented by the antivirus. If the transpiled circuit has a sig-
nificantly smaller number of gates than the original circuit this could raise a flag
prompting that this circuit is doing more than one thing (which should be perform-
ing a computation), and perhaps it should be run in isolation.

Analyzing a circuit after it has been allocated to a quantum chip and estimating
the amount of crosstalk it induces on neighboring qubits is possible in principle
if one knows the crosstalk rates between qubits. Again, such an analysis could
be used to flag potentially dangerous circuits. Measuring crosstalk rates between
two qubits is possible in principle but when the number of qubits increases the
number of qubit pairs increases exponentially, so some heuristics should be used
to reduce the number of qubit pairs that need to be considered.

4.4.6 Shuttle Exploiting in Trapped-lons Quantum Computers

The vulnerabilities of trapped-ion QPUs have been studied significantly less than
those of superconducting QPUs. However, a recent study [76] has demonstrated
that the shuttling of ions in a trapped-ion QPU can be exploited to execute a fault
injection attack. The shuttling of ions is a process wherein ions are moved from
one trap to another while not altering the quantum state encoded in the qubits.
An attacker can exploit this process to launch a fault injection attack on the qubits
assigned to another user.

In trapped-ion systems, atoms like Yb (Ytterbium) or Ca (Calcium) are ionized
and confined between electrodes using electromagnetic fields, hence the name
"trapped-ion" quantum computer. States |0) and |1) are encoded into the internal
states of the ions. The system features traps interconnected by a shuttle path that
facilitates the shuttling of ions from one trap to another when necessary. Each trap
has a capacity it can accommodate. Quantum gate operations on qubits/ions are
executed using laser pulses. The attack discussed in this section relies on the fact
that 2-qubit entangling gates can only be performed on ions located in the same
trap. Therefore, executing gates between ions located in separate traps requires
shuttling ions to co-locate them.

The attack model proposed in [76] is based on the observation that repeated
shuttling operations add energy to the ions and decrease the gate operation fi-

Quantum Computing Security 44

delity on them. If the QPU is shared and multiple users are running circuits in
parallel, an attacker can attempt to launch a fault injection attack by shuttling ions
to the traps of the victim's qubits. The attacker can exploit the shuttling process to
degrade the fidelity of gates executed on the victim’s qubits.

This approach doesn’trely on direct manipulation of the qubits’ states but rather
on the physical process specific to trapped-ions quantum computing. Two method-
ologies are possible for generating programs that can launch such attacks. A sys-
tematic attack can utilize knowledge of the system’s architectural policies to craft a
targeted attack, exploiting specific weaknesses or inefficiencies. A random attack
does not require prior system knowledge, trading off some level of attack potency
for ease of execution.

One countermeasure to prevent this exploit involves the victim adding a suf-
ficient number of dummy qubits to their program to fully occupy a trap, thus
preventing an adversary's qubit from sharing the same trap and averting shuttle-
induced fidelity degradation. The user applies virtual-Z gates to these dummy
qubits to ensure the compiler allocates them without affecting the actual program
since these gates have perfect fidelity and require no physical operation. How-
ever, this strategy introduces a trade-off between security and cost, as using more
qubits could lead to higher charges from the quantum cloud provider.

Cloud providers can enforce a maximum shuttle limit for programs to prevent
shuttle-exploiting attacks. If a program exceeds the maximum shuttle count, it
can be scheduled to run in single-programming mode, essentially isolating it from
other programs and eliminating the risk of affecting the fidelity of those programs.
While this approach may reduce throughput due to the switch between multi-
programming and single-programming modes, the loss can be offset by charging
more for programs that require a high number of shuttles. This measure ensures
that high-shuttle programs do not impact others, and the cloud provider does not
incur losses.

5 Research, Analysis and Experiments

5.1 Classical Attacks on Quantum Computing Software
Stack

In this section we studied attacks on a quantum computing software stack through
a compromised user system. We developed a proof-of-concept (PoC) attack in
code, which is accessible at [53]. This PoC demonstrates two basic classical attack
vectors identified in the quantum programming ecosystem. In these scenarios,
we assume the attacker is running on the local machine of the user, with the same
privileges that the user has. Using this PoC, the attacker steals the user’s circuits,
its authentication token and takes advantages of the victim’'s resources like his
qguantum cloud credits. The scenarios we tested are detailed in the subsequent
two subsections.

5.1.1 Attacking the APl Authentication Tokens

In this scenario, we simulate an attacker who is already operating silently on the
victim’'s machine, searching for different tokens in various predefined locations.
An auth token is a unique identifier that allows a user or an application to access
a resource without prompting for login credentials every time. In the quantum
ecosystem, this token is a gateway to cloud infrastructure and user account, used
to provide access to quantum computers. The main flow is illustrated in Figure 5.1.

The Python module responsible for token discovery is implemented in the to-
ken_discovery.py file, which is available in our public repository. According to our
experiments, these authentication tokens are stored either directly on the disk or
in the environment variables, as follows:

* IBM Qiskit

Quantum Computing Security 46

- Saved on disk in a JSON file in "default-ibm-quantum/token" key. The
path to the JSON file is:

* Windows: \\users\\<username>\\.qiskit\qiskit-ibm.json
* Linux: $HOME/ .qiskit/\qiskit-ibm. json
- Saved in environment variables:

* QISKIT_IBM_TOKEN
* QISKIT_IBM_INSTANCE
* QISKIT_IBM_CHANNEL

« JonQ. Saved in environment variables:

- IONQ_API_KEY
- IONQ_API_TOKEN
- QISKIT_IONQ_API_TOKEN

The malicious program is designed to search in predefined locations for po-
tential access tokens. Upon discovering such tokens, they are leaked to a remote
attacker’ site, simulating a Command and Control (C2) server, represented by the
quantum _attacker_c2.py module. In this scenario, the attacker attempts to steal

Request Access Token '
l Respond with Access Token

Authorization Server of
Quantum Cloud Provider

Client

Pass Access Token ."
Respond with Protected Resource
Resource Server of

Quantum Cloud Provider

Figure 5.1: Auth Token - Basic Flow

Quantum Computing Security 47

tokens and use them to access the victim's cloud account. For our PoC, we at-
tempt getting from the victim’s account the list of previously scheduled quantum
programs (i.e. quantum jobs), to determine if we can access the victim’s private
resources. Specifically targeting the IBM Qiskit platform, the discovery process is
straightforward. We utilize the giskit_ibm_provider package, which provides APIs to
query job history, and simply make the necessary API calls.

provider = giskit_ibm_provider.IBMProvider(token=stolen_token)
jobs = provider.jobs()
for job in jobs:
job_data = provider.retrieve_job(job.job_id())
for circuit in job_data.circuits():
circuit.draw(output="text")

Additional effort is required for lonQ, as there is no documented API to query
a list of previously ran jobs. However, by examining the lonQ website, we discover
that we can access the job history page. On the browser console, we observe a GET
request to the following URL: https://api.ionqg.co/v0.3/jobs. This allows us
to manually craft a request to access the job history. We discovered private APIs
(make_path and _get with_retry) in iong_client.py file from the giskit-iong package.
Using these two APIs we manage to build the request path and authenticate with
a valid token.

provider = giskit_ionq.IonQProvider(token=stolen_token)
backend = provider.get_backend(’'ionqg_simulator’)
client = backend.client

reg_path = client.make_path("jobs")
jobs = client._get_with_retry(reg_path,
headers=client.api_headers).json()

To obtain the details of the circuits that have been run as part of the job, we re-
peat the same process that we used to discover the aforementioned GET request,
and inspect the browser console again. In doing so, we notice another GET request
to https://api.iong.co/v0.3/jobs/<job_id>/program.

for job in jobs["jobs"]:
job_id = job["id"]

https://api.ionq.co/v0.3/jobs
https://api.ionq.co/v0.3/jobs/<job_id>/program

Quantum Computing Security 48

req_path = client.make_path("jobs", job_id, "program")

program = client._get_with_retry(req_path,
headers=client.api_headers)

print(json.dumps(program.json(), indent=4))

If the providers do not have any safeguards in place to protect against token
leakage, once the attacker obtains the token, it can be used freely and could po-
tentially cause additional costs for the victim.

Alesson learned from thisis to ensure to adhere to best practices. Avoid storing
sensitive data in plain text, particularly on the disk or, even more critically, within
the program itself, as this can lead to accidental inclusion in a public repository.
Instead, opt for storing such data in encrypted configuration files. Your program
can decrypt these files when needed, providing an additional layer of security. In
the event that your private token is accidentally exposed on a public repository,
you should promptly revoke it through the cloud platform.

5.1.2 Quantum Circuit Hidden Alteration

An important resource needed to run quantum programs is the framework that
helps the user designing, writing, and sending the circuit to the quantum cloud
for execution. Most of these frameworks are open-source, thus an attacker can
identify vulnerabilities more easily. For the PoC presented below we use IBM's
open-source Qiskit framework. It is written in the Python programming language,
therefore, it is provided as an installable Python package. Like other Python pack-
ages, Qiskit package could be installed in per-user package installation directory
or in a virtual environment as recommended by Qiskit documentation . Conse-
quently, an attacker could access the package installation directory of a Qiskit user,
supposing he succeeds running code with the same privileges as his victim. In our
PoC we will consider the attack could run malicious code in one of the victim user’s
processes.

Considering the fact that anyone has access to the source code of the frame-
work, one can observe that the user’s circuits go through the function execute _func-
tion.py from the execute module. Thus, an attacker that tampers with this function
can intercept and alter victim's circuits, and even inject his own circuits to be ex-
ecuted. In order for an attacker to replace or alter the file mentioned above, the

"https://docs.quantum.ibm.com/start/install

https://docs.quantum.ibm.com/start/install

Quantum Computing Security 49

installation paths of the python packages must be discovered. To achieve this,
all running python processes are monitored, as well as those that are going to
be started while the malicious PoC process is running. This way, one can deter-
mine the location of the python packages, based on the path of the python exe-
cutable and environmental variables. Once the location of the named packages is
discovered, the original target package file is saved to be restored when needed,
and the malicious process replaces it on the disk. Once the execute_function.py file
is patched, every time the user submits a circuit to be executed, the attacker in-
tercepts the circuit and sends it to a remote site, simulating a C2 server, which
is represented by quantum_attacker_c2.py module. The corrupted package also
gives the attacker the possibility to add other circuits to be executed. In this case,
they are loaded from a predetermined directory. Adding circuits to be executed
can represent an issue because the user might pay for the execution time on the
IBM Quantum Platform, and the attacker would run his quantum circuits using the
victim’'s paid resources. The malicious process runs for an indefinite time until it
is stopped, and then the altered files are restored to their originals to leave no
traces. All mentioned steps are implemented in the patcher.py module from the
public repository.

On IBM Quantum Platform the user can inspect the state of the submitted cir-
cuits. If the submitted circuits are altered or new ones are added, this can be easily
identified by the user through this platform. To hide these alterations from the
user, a browser plugin can be implemented. In our case, we implement a plugin
for the Firefox browser, so that when the web page is loaded, its content is altered
in favor of the attacker, thus displaying only the user’s original circuits. This plugin
is executed only when the web page related to IBM platforms is accessed.

A solution to this problem is to provide a method to increase the security of
the packets that are used by Qiskit. For this scenario, a security solution should be
configured to monitor the Qiskit packages (i.e. files) and validate their integrity, so
thatif they are tried to be altered by an attacker, such an attempt could be blocked
or the user warned of the ongoing attack.

Reader should note that this type of source-code alteration attack could be
done in other SDK environments for other types of computing, not unique to Qiskit
or quantum computing in particular.

Quantum Computing Security 50

5.2 Classical Attacks on QPUs

5.2.1 Attacking QPU Calibration Using the Pulse API

We have taken a brief look at several quantum devices from IBM that are freely
available and provide pulse level controls like the 127-qubit device ibm_kyoto.
Pulses are microwave signals characterized by an amplitude, a phase and a shape.
The effect of a pulse when applied to a single qubit is to implement a rotation of
the qubit state on the Bloch sphere [45] around an axis in the X-Y plane whose
direction is controlled by the phase of the pulse. The angle of the rotation is pro-
portional to the area under the pulse envelope. Our experiments indicate that
the frequencies available on IBM Eagle processors range from roughly 10% less
than the qubit resonance frequency to frequencies as large as 50% higher than
the qubit resonance frequency. There is a limit on the maximum amplitude of the
pulse. The overall length of a pulse can be much larger that the length needed for
a typical implementation of an X or a 'Y gate. Our experiments indicate that pulses
as long as 64 us can be used to implement a single gate and 1400 such gates can be
stringed together on each of the 127 qubits. Such a circuit is valid and runs without
errors on ibm_kyoto. One single shot will have a runtime of 0.045 seconds but the
number of shots for each job can be as large as 20000 which seems to indicate
that pulses can be applied to the qubits in a QPU for relatively long times.

According to [32] spurious resonances in the photon loss spectrum in super-
conducting qubits may indicate couplings of the qubit with environmental degrees
of freedom. We have executed a frequency sweep experiment on one qubit from
ibm_osaka whose results are shown in Figure 5.2. The first peak on the left indi-
cates the qubit resonance frequency. We do not understand the physical explana-
tion for the second peak shown on the right, but it may be due to coupling to the
readout resonator.

The IBM quantum devices are being calibrated once every several 2 - 4 hours.
We considered that trying to run pulse programs with the purpose of affecting
these calibration parameters would be a violation of user license terms, and we
did not perform further experiments.

Quantum Computing Security 51

x —2.00 x
—2.25 1
- _ 4 x
3 -250

—2.75

—3.00

asured signal [a

x

i
-3.25 1 x

X X Xx x x
Lxx x x —3.50 4 2 y aﬁﬁé&
B s siallon x’s‘x”“&xw?“ a0 T 50,508 f@g éfxi x§; }@(x XX X
x

|
w
7

-3.75
4.4 4.5 4.6 4.7 4.8 49 5.0 51 5.5 6.0 6.5 7.0 7.5
Frequency [GHz] Frequency [GHz]

Figure 5.2: Frequency sweep results for one qubit from ibm_osaka in the 4.4 - 5.2
GHz range (left) and the 5.2 - 7.6 GHz range (right)

5.3 Quantum Attacks on Classical Computers

In the last years at Bitdefender we have strengthened our expertise in lattice-
based cryptography, which is one of the most promising post-quantum solutions.
We have developed standard cryptographic schemes [4] whose security is based
on the hardness of new lattice problems [74] and lattice-based schemes with ad-
vanced functionalities and security requirements [36, 37, 1, 38], but also tested
other such schemes in practice [90]. We have also worked on the mathematical
hardness foundations of lattice-based solutions, by showing that the underlying
problems of some NIST proposals are related [73, 11, 10]. Our results have been
recognized and published at top crypto conferences and our researchers have
been invited to talk about their work all over the world. We strongly believe that
qguantum computers will become a reality soon, and we are putting all our efforts
into getting ready, both from a quantum and a post-quantum perspective.

5.4 Quantum Attacks on QPUs

5.4.1 Experiments on Qubit Reset Attacks

Almost all research about quantum attacks on QPUs published until the time of
writing assumes some kind of multi-tenant environment [77, 23]. Our investigation
in this section is centered around attacks on quantum systems that are possible
with the technology available today where we do not assume multi-tenancy. We

Quantum Computing Security 52

specifically focus on superconducting qubits.

In a readout attack, the attacker attempts to recover the results of a program
executed by the victim without interfering directly with the victim’s circuit. Here,
the focus is on the last state of the qubits and the measurement operation. The
goal is to let the victim perform the computation and then steal the end result.

In the superconducting technology qubits are reused and must be reset be-
tween consecutive shots of a circuit and between different circuits. The reset op-
eration to the |0) state after each circuit run is critical for the correct operation of
the system. If the reset operation is imperfect, residual information from the pre-
vious circuit could leak into the subsequent circuit. We explore the idea that the
attacker would measure the qubit immediately after the victim runs his circuit and
performs his measurements. The attacker assumes that the reset operation is not
perfect and that information measured by the victim is not completely erased.

In our experiment, we aimed to test the effectiveness of the reset operation on
ibm_osaka. We targeted the first seven qubits of the chip. We imagined a victim
who runs a 7-qubit quantum circuit that ends with measurements on each qubit.
The attacker has no prior knowledge about the victim’'s prepared state or circuit.
He tries to recover the state measured by the victim by simply measuring the same
qubits. In our attack model we assume that the victim runs their circuit multiple
times and the attacker has the ability to consistently run a measurement circuit
immediately after each shot of the victim's circuit.

IBM quantum chips are accessible through a cloud infrastructure. A user has
the ability to submit a job of one or more circuits to the cloud, where it is queued
for execution. Each job contains a set of circuits and a shot count. The circuits
will be executed the number of times specified by the shot count. The results
can be returned aggregated per result pattern or separately for each shot. If the
user submits a list of circuits, then on each shot, all circuits will be executed. This
means that on the first shot, the QPU runs all circuits, then moves on to the next
shot where it runs all circuits again, and so on.

To perform our experiment, we needed to ensure the attacker's circuit, con-
taining only measurements, is always run after the victim’s circuit. For this we ran
jobs with a list containing the victim and attacker circuits. This should have the
desired outcome of the two circuits running in sequence for each shot and not
be interrupted by other circuits. We have to note here that this requires a new
assumption. We assume that the reset operation performed between separate
circuits in the same job is the same as the one performed between jobs. For map-

Quantum Computing Security 53

ping our circuits on the physical devices, we performed transpilation and checked
that the mapping was performed as expected for each circuit. This is important
because we must be sure that the physical qubits measured by the attacker’s cir-
cuit are the same ones prepared and measured by the victim. We also made sure
that the qubit ordering was the same.

The backend we used, ibm_osaka, is a superconducting chip that has 127 phys-
ical qubits. The IBM system reports the last calibration time and some error pa-
rameters for each physical qubit. Of interest for our experiments is the probability
of measuring 1 if the measured qubit is in state |0). We note this property for the
first 7 qubits of the chip (qubits 0 to 6).

We start with a control setup where the victim’s circuit ends in the |0) state
for each qubit. To prepare this circuit, we apply an X gate to each qubit to flip all
of them to state |1). We then apply a barrier to prevent the transpiler built into
Qiskit from optimizing away the initial X gates. Then we apply another X gate on
each qubit to bring them back to state |0). We apply another barrier, followed by
measurement gates on all qubits. As a side note, the barrier has no role in circuit
execution; it is used only at transpilation time and for visualization. The attacker’s
circuit consists only of measurement gates on all qubits.

ql“H‘m— O=O=0=0=0==0
g w g

o i1 ﬁf @

a1 & - @

(a) (b) (0)

Figure 5.3: Control experiment design (created using IBM Quantum) (a) Victim's
circuit (b) Attacker’s circuit (c) IBM Osaka backend with the qubits used highlighted

When we transpile the circuits we use a coupling map to ensure our circuit is
mapped to qubits 0 to 6 on the chip. After transpilation, we wrap the two circuits in
a listand submit them for execution, setting 19,000 shots. The backend will run the
pair of circuits (the victim circuit followed by the attacker circuit) 19,000 times. On
an ideal quantum computer, the result of executing a victim circuit should match
the prepared ‘0000000’ state in 100% of times. On a real QPU, we expect to see

Quantum Computing Security 54

some results that differ from the prepared state. We go through the results to find
all shots where the measured state for the victim was not’0000000'. In these cases,
we discard both the victim and attacker results. We then go through the remaining
results for the attacker and count how many times each qubit was measured as'1".
We compute the probability of measuring '1' for each qubit. Likewise, we perform
this procedure 15 times.

In this control setup, there is no information in the victim's circuit since the pre-
pared state is the ground state. We expect the attacker’s probability of measuring
'1" to match the probability of measuring "1 when the state is |0), as reported by
IBM Q, for each qubit. We find this to be true within the range of shot noise as
shown in Figure 5.8.

In the next phase of our experiment, we prepare the victim'’s circuit such that it
ends in the |1) state for each qubit. We do this by applying an X gate to each qubit
followed by a barrier and measurement gates. In this case, the victim’'s expected
measured state is'1111111". Just like before, we follow this with an attacker circuit
consisting of only measurement gates. We transpile, keeping the same coupling
map, and submit the pair for execution 19,000 times. We filter out all results where
the victim’s measured state was not"1111111". We go through the remaining re-
sults for the attacker's measurements and count how many times each qubit was
measured as'1’. We compute the probability of measuring "1’ for each qubit. Again,
we perform this entire execution 15 times.

In this case, after the victim's circuit ran, the qubits were left in an excited state.
There is a possibility that the reset was imperfect and that some residual informa-
tion was left in the qubits for the attacker to measure. We want to see how the
attacker’s probability of measuring '1" in this case compares to the probability of
measuring '1" when the victim’s state is |0) for each qubit. We plot the results in
Figure 5.8. The figure shows the probability of the attacker measuring "1’ for each
qubit. For each qubit, we show 30 probability points. The 15 points in blue repre-
sent the probability of the attacker measuring "1’ when the victim measured ‘0’ for
that qubit. The 15 points in red represent the probability of the attacker measuring
1" when the victim measured '1".

We can see that the reset operation efficiency is different for each qubit. We
can also see that it is not correlated with the measurement error per qubit. For
qubit 6, there is a consistently higher probability of the attacker measuring’1’ when
the victim measured "1’ versus when the victim measured ‘0. This means that the
attacker has a high chance of discriminating between the two possible states of

Quantum Computing Security 55

Qubit Measurement Counts and Reported Errors

o

g L 0.035 A
S 0.025 1 o
: 2
£ -0.030
E B
= 0.020 - W2
'S L 0.025 ~
5 £
< 5
~ 0.015 A r0.020 &
g E
2 L 0.015 <.
0 0.010 - =
E =
= =]
o L 0.010 2
S =
& 0.005 4 D
5 - 0.005 5
= O
=]
g o
< 0.000 - L 0.000

0 1 2 3 4 5 6
Qubit
Figure 5.4

Figure 5.5: Probability of measuring "1’ when state is |0), measured vs reported by
IBM (created using IBM Quantum)

Quantum Computing Security 56

o g

o1 S 3008 300C300¢ X

= - ® ¢ ¢ o b

o ik i o~d-o~c-c-d-c-0-0d-0-c-0
. = p o o !

- a_ JO0E 200¢ 200¢ X

a0 Kl :; N JUUE JUUE JUUE
S -~ - - - - - -

o0 5 ?‘ @ b o o} é

a ﬂ? O~-0-b-0-0-0-0-0 :oo—;

(a) (b) ()

Figure 5.6: Information leak experiment (created using IBM Quantum) (a) Victim's
circuit (b) Attacker’s circuit (c) IBM Osaka backend with the qubits used highlighted

Attacker measuring 1 when victim measured 0 vs 1

x ¥ Victim measured 0
0.07 % Victim measured 1
X
_, 0.06 - %
g
5
% 0.05
g X x
C
3 b4 hd
E 0.04 ¥ % x
X
2 ¥
=]
P:" 0.03 + ii ii e 5%
£ X ;!
[+
g 0.02 II X i ¥ x
s $ ¥ N %
X Ii
%
0.01 | ii ii
T T T T T T T
0 1 2 3 4 5 6
Qubit
Figure 5.7

Figure 5.8: Attacker measuring "1’ when victim measured '0’ vs "1’ (created using
IBM Quantum)

Quantum Computing Security 57

the victim’s measurement. For qubit 2, the probability of success for the attacker
is much lower since the two cases are less distinguishable. We can also note here
that, in all cases, the probability of the attacker measuring "1’ increased on average
when the victim’s state was '1".

Based on these results, we try to create a model that can predict the victim’s
state for each qubit. We repeat the above experiments, preparing the victim’'s mea-
sured state in different patterns. We then again measure the attacker’s probability
of getting "1’ for each qubit. Furthermore, we set a threshold for each qubit. If the
attacker’s probability of 1" is higher than the threshold, we assume the victim mea-
sured "1’ for that qubit. If not, we assume the victim measured '0". The threshold
was set as the highest blue point in the figure Figure 5.8 for each qubit.

We used 56 different patterns with an equal number of '0s’ and "1s’ for each
qubit. The accuracy of the model is plotted in the table Table 5.1 Note that a ran-
dom guess would yield an accuracy of 50%.

Qubit 0 | Qubit 1 | Qubit 2 | Qubit 3 | Qubit4 | Qubit5 | Qubit 6
57% 84% 64% 75% 66% 91% 100%

Table 5.1: Accuracy of the model for each qubit

As stated before we assumed that the reset operation performed between sep-
arate circuits in the same job is the same as the one performed between jobs.
Though, after reviewing our paper, IBM stated that ‘reset’ function between jobs
differs from the ‘reset’ function within jobs. The ‘reset’ function between jobs on
IBM quantum systems is longer, with qubits becoming fully thermalized, making
leakage of information between jobs impossible”. We think that further research
is needed to clarify in what conditions this kind of attacks could still be performed.

5.4.2 Fault Injection Attacks

Having seen that information can indeed leak from one circuit to the next, there
is another type of attack that can be performed on superconducting qubits. Each
user that runs a circuit assumes that prior to the circuit beginning to execute, the
qubits are in the ground state. If this assumption is incorrect, the results of run-
ning the circuit will be compromised. By leaving the qubits in an excited state, an
attacker can influence the result of the next circuit. This would be a fault injection
type of attack. Since we observed that, for all qubits, there is an increase in the

Quantum Computing Security 58

probability of measuring 1" when the previous circuit ended in an excited state,
this kind of attack is possible. For a discussion of the relevance and power of this
scheme see Subsection 4.4.1.

We present here a new experiment similar to the one presented in the previous
section, butwhere theroles are reversed. Here we envision an attacker who runs a
circuit immediately before the victim’s circuit. The goal of the attacker is no longer
to read the victim’s results, but rather to influence the state of the qubits at the
start of the victim’s execution. To do this he will prepare his qubits in an excited
state. If the attack is successful, the victim’s circuit will start execution with a set of
qubits that are not all in the |0) state, and consequently, the results of running the
circuit will be affected or in some cases completely compromised.

Similar to our previous experiment, we will use the first 7 qubits of ibm_osaka.
We prepare two circuits that we bundle-up in a list and run them for a total of
19000 shots. This time the attacker’s circuit will run first, followed by the victim’s
circuitin every shot. To maximize the probability of leaving the qubits in an excited
state, we take advantage of the pulse library in Qiskit. We will create our own cus-
tom pulse that will excite the qubit to the second excited state. For compactness
of notation we will label this as state |2).2 We omit the fine-tuning of the frequency
and amplitude for each qubit and calculate the expected frequency for the pulses
from the backend properties reported by IBM. We use a generic amplitude for all
qubits. An example of the pulse for one qubit is shown in Figure 5.9. We prepare
a custom pulse for each qubit. We first apply an X gate to all qubits to bring them
to state |1), then we apply the custom pulses to transition each qubit to the sec-
ond excited state. After that, we added a barrier and measurement gates. This
last step, of adding measurement gates, is not necessary and does not seem to
influence the results significantly.

In order to find what is the state of the qubits when the victim's circuit starts
execution, the victim’s circuit consists of measurements gates placed each qubit.
The attacker’s circuit, victim’s circuit, and layout of the qubits used on the backend
are shown in Figure 5.10.

As in the previous section, we repeated the experiment 15 times. We then
go through the results for the victim's measurements and count how many times
each qubit was measured as 1’ right at the start of the circuit execution, and we
calculate the probability of measuring "1’ for each qubit.

2The reader should not confuse this with the more common two-qubit state |10) sometimes
labeled in the same way

Quantum Computing Security 59

Name: |1) = |2) schedule, Duration: 160.0 dt

Af=+4513.55 MHz
DO—5
no freq,| |11) - |2) pulse
0 34 67 101 134 168

System cycle time (dt)

Figure 5.9: Custom pulse to excite a qubit from state |1) to the second excited state
|2) (created using IBM Quantum)

an——ai []) ([J []
B I, 0-0-0-0-0-0-0-0-0-0-0-0-0
a2
=—— ¢ ¢ ¢ ¢
— - @ ¢ ¢ ¢ ¢
a2 - > -0-0-0-0-0-0-0-0-0-0-0-0
P=m— ‘ 4 e-4-o2
qZBs-.—_ q25 & o & & o Ol
, ¢ ; 6 ¢
=——— @ @ & $
o LT o L LB LT 10 SRS e o 0-;
(@) (b) (©

Figure 5.10: Fault injection experiment (created using IBM Quantum) (a) Attacker’s
circuit (b) Victim’s circuit (c) IBM Osaka backend with used qubits highlighted

Quantum Computing Security 60

The results of the victim’s measurements are shown in Figure 5.11. In blue and
red are the data points obtained from the experiments presented in the previous
section. They show how the qubit's starting state is affected when the previous
run has prepared them in state |0) and |1) respectively. The green points show
the probability of measuring 1" when the previous run has prepared the qubits
in the second excited state. From analyzing the results, we can conclude that the
probability of the circuit starting in a state different from |0) is increased dramat-
ically when the attacker has prepared the qubits in the second excited state. For
all qubits, the probability of starting in state |1) is relatively close to 50% which
represents a random chance.

Victim starting in state |1) when attacker prepared state |0}, |1) or |2)

" % Atacker prepared |0)
% Atacker prepared |1}
% Atacker prepared |2)

0.6
i I i
I
ii %
0.3

0.2 4

0.4

Probability of Victim starting in state |1}

o
=

0.0 1 it

Qubit

Figure 5.11: Probability of victim qubits starting in state |1) when the attacker has
prepared the qubits in state |0), |1), or the second excited state |2) (created using
IBM Quantum)

Having performed these experiments on seven qubits, we can scale up and see
if the behavior we found generalizes to entire quantum chips. We ran the same ex-
periments on all 127 qubits of IBM_Osaka and on all the qubits of IBM_Sherbrooke.
The results are shown in Figures Figure 5.12 and Figure 5.13, respectively. From

Quantum Computing Security 61

these two figures, we can draw the same conclusions we drew from our initial
seven-qubit experiments: under the stated assumptions, information can leak
from one execution to the next, and this is a vulnerability that can be exploited
by an attacker either to read the victim’s results or to influence the victim's ex-
ecutions. Moreover, this behavior is consistent across many qubits and across
different chips. This indicates that more attention must be given to vulnerabilities
that can arise from the design and manufacturing of quantum chips.

Victim starting in state |1) when attacker prepared state |0), |1) or |2)

x Atacker prepared |0}
x Atacker prepared |1}
x Atacker prepared |2}

gos ! ¥ ¥ ! “ ![H x
R il I i i
£ gg g i:] " x:z H l! “ L
ii" 1l ” “" (] ! “] I 1 "ii 0 ii“ii W "“ i!!i" x | “ |||”! ““ bt} !!“ 5.k
b W ;g" o 1T i T
B A R A '!! ' i

¥
3 d cll
T i[i i ;g Vit i i !i “
i M H
:xl ii ii "“ ““"Iin"“ lI“"al iiiin " ll" Il n ||" “Iinn llll"""“ "" “illl"] n"il""" ii "n“ ""!E LIL] nil IInii ||“n “ " ! i i Hii ”dl

.....

Figure 5.12: Probability of victim qubits starting in state |1) when the attacker has
prepared the qubits in state |0), |1), or the second excited state |2) for all 127 qubits
of IBM_Osaka (created using IBM Quantum)

As stated before we assumed that the reset operation performed between sep-
arate circuits in the same job is the same as the one performed between jobs.
Though, after reviewing our paper, IBM stated that ‘reset’ function between jobs
differs from the ‘reset’ function within jobs. The ‘reset’ function between jobs on
IBM quantum systems is longer, with qubits becoming fully thermalized, making
leakage of information between jobs impossible”. We think that further research
is needed to clarify in what conditions this kind of attacks could still be performed.

Quantum Computing Security 62

Victim starting in state |1) when attacker prepared state |0), |1) or |2)

x Atacker prepared [0)
x Atacker prepared [1)
x Atacker prepared |2)

T X g %
' X * X ¥
ol VI i
| 5 if!!!!;:“!! i
wy X] x| |
i L] HIE

e
! i §E i

i
Rk e
I
H

WEE

k.. I

’iiiig»xii s b)(: PR B
(o 111 1M T R (TR

uuuu

Figure 5.13: Probability of victim qubits starting in state |1) when the attacker has
prepared the qubits in state |0), |1), or the second excited state |2) for all 127 qubits
of IBM_Sherbrooke (created using IBM Quantum)

5.4.3 Exploring the Potential for Cross-Talk Attacks

Cross-talk attacks have been discussed in Subsection 4.4.5. To execute such an
attack, the victim and the attacker must share a QPU at the same time. Today
this scenario is not supported by the existing NISQ devices but could be plausible
in the future when the number of qubits available in quantum computers will in-
crease significantly. We will study here results of running the Bernstein-Vazirani
algorithm. We start with the textbook algorithm as a reference. On the second
step we add additional quantum gates on qubits adjacent to those used for imple-
menting the reference algorithm and run the circuit again to study the effects of
noise induced by the crosstalk effects.

A quantum circuit implementing this algorithm is shown in Figure 5.14 along
with results obtained by executing it on the ibm_kyoto quantum device. Though
note that IBM does not allow multiple users to work on a QPU simultaneously,
making leakage between users impossible on today’s systems. The two control
gates implement a boolean function that returns the bit-wise product between an
arbitrary 5-digit input number and a fixed binary 5-digit mask, which we'll call ’s'.
The purpose of the algorithm is to find the number ‘s’ which, in the ideal case, can

Quantum Computing Security 63

be computed by running the circuit one single time. In practice, due to noise in-
herentin current quantum computers, the experiment must be run multiple times
and the majority outcome will indicate the correct result. Because we need to do
many measurements as opposed to a single one, the quantum advantage is lost
in this case, but this is less relevant for our discussion here. For this circuit, the
correct result is the [00011) state which is a binary representation of the number
‘s'. The ibm_kyoto quantum device has 127 qubits, but we need only 6 qubits for
implementing the Bernstein-Vazirani algorithm for 5-digit numbers.

Figure 5.15 shows on the left a subset of the ibm_kyoto qubit map that we
used for this experiment, along with the qubit connectivity. The qubits used in the
algorithm are indicated in green and the adjacent qubits where X gates have been
added are indicated in red. To amplify the cross-talk effect, the additional X gates
have been added on each layer in the circuit. In the same figure, count results from
running this extended circuit are shown on the right. The measurement counts
plot indicates a significant deterioration of the quality of the results where the
probability for measuring the correct results is reduced by 35%.

Figure 5.16 shows on the left the layout for a similar attack where instead of
X gates, Controlled-X gates are placed on adjacent qubits. Here the target qubit
belonging to Controlled-X gate is indicated in red and the control qubit is indicated
in blue. To amplify the cross-talk effect, the additional Controlled-X gates have
been added on each layer of the circuit. Measurement count results are shown
in the same figure on right. In this case, as well, the degradation of the results is
substantial when compared to the results obtained from running the experiment
with no induced crosstalk shown in Figure 5.14.

Quantum Computing Security 64

o —ale—ulE =~
o — ?
oy —
o) —
o) —

Figure 5.14: The Bernstein-Vazirani algorithm (left) and results from running it on
ibm_kyoto (right). The plot on the right shows measurement results obtained from

10000 shots (created using IBM Quantum)

4500

3000

Count

1500

5020

o1 826

193 188
836772 I 307541 | 1014 81147182 | 151911 925145 4 6 121
5

1278

Figure 5.15: Cross-talk experiments results obtained by placing X gates on qubits
adjacent to the qubits used in the algorithm. On the qubit connectivity map shown
on the left, the algorithm qubits are indicated in green and the qubits where X gates
were placed are indicated in red. The plot on the right shows measurement count
results obtained from a 10000-shot experiment (created using IBM Quantum)

Quantum Computing Security 65

5072

4500

l 1500
@- 792 806 711
77] 501

42
0 ITI 31“’.772"?:9_7 | 101612836 3294 |1110119_3 813123% 3 227

Figure 5.16: Cross-talk experiment results obtained by placing Controlled-X gates
on qubits adjacent to the qubits used in the algorithm. On the qubit connectiv-
ity map shown on the left the algorithm qubits are indicated in green, the control
qubits of the Controlled-X gates are indicated in blue while the target qubits of the
Controlled-X gates are indicated in red. The plot on the right shows measurement
count results obtained from a 10000-shot experiment (created using IBM Quan-
tum)

6 Reflections on Quantum Computer
Related Security

6.1 Importance of Our Investigation

In this section we want to analyze the findings of our work and their relevance.
We would like to clarify whether they address realistic problems or just theoretical
ones, who could they be useful for and in what context and conditions. Finally, if
the security issues this paper reveals are important, we would like to see how they
could be addressed and who should take care of this.

Firstly, let us note that even if the development of quantum computer technol-
ogy and quantum algorithms relevant for and applicable to real-life problems is
still an ongoing research, there has been tremendous progress in these fields in
the last couple of years. It is conceivable that in the near future, to have quantum
computers and quantum programs that will be used for commercial purposes. Not
to mention the large community of quantum researchers, who are currently us-
ing the nowadays quantum computers. In this context, we think there is no doubt
that looking at how secure quantum computers are and will be, and consequently,
how secured their users are, is a very important aspect. Ignoring it could have
critical consequences when quantum computers will be used for real-life relevant
things and cyberattackers will have a great motivation to act against them. Of the
same importance is the fact that quantum computers could be used one day to
break classical cryptographic schemes currently in use. It is therefore mandatory
for quantum providers and quantum users to be aware of the security challenges
and risks the large-scale availability of powerful quantum computers will raise.

Like any other resource, it is of equal importance how secure quantum com-
puters are for both their owners and their users. As we saw in previous sections,
guantum computer developers have a great interest in keeping their technology

Quantum Computing Security 67

confidential. Similarly, quantum computers’ users want to keep their quantum al-
gorithms and data confidential. In the same time, quantum providers must protect
their resources and their clients.

During our investigation, we noted that, overall, the possible attacks on quan-
tum computing infrastructures are of the same types as those targeting classical
computing resources. There could be, thus, attacks like DoS, tampering with differ-
ent operations and data, information leakage, escalation of privileges etc. Though,
guantum computing infrastructures incorporate both classical and quantum com-
puting components and technologies. This means that securing them implies a
combination of both classical security mechanisms and quantum specific ones,
depending on the type and particularities of the components that are the immedi-
ate target of an attack. This is why we tried to classify the possible threat models
and attack vectors regarding quantum computing infrastructures, based on the
classical and quantum combinations of both targeted components and the attack
mechanisms and methods. What is important to note in our classification is that
guantum computers could be both attack weapons and targeted resources. Simi-
larly, from a defender’s perspective, quantum computers could be both resources
to secure and tools used to implement or improve security solutions. Let us review
our classification, trying to emphasize main aspects we identified and possible so-
lutions.

6.2 Attacks and Defenses

6.2.1 Classical Attacks on Quantum Computing Software Stack

In this area there could be any kind of classical attacks targeting classical comput-
ing resources. Because access to quantum computers is provided through cloud
services and running a quantum program usually implies both the end user’ com-
puter and cloud resources, attacks could target each of the two and the communi-
cation channels between them. While most of such attacks (e.g. DoS, MitM, MitB,
DNS spoofing etc.) and possible security solutions are well known, and not neces-
sarily particular to quantum infrastructures, we will not review all on them. Still, we
tried to identify what could make such classical attacks specific when targeting the
guantum software development process. We mostly focused on end user comput-
ers, while not having needed privileges and rights to perform security assessments
of cloud services and resources. We also considered communication channels be-

Quantum Computing Security 68

tween user computers and cloud to be secured by using classical cryptography, so
protected against classical attacks.

One weakness we identified in several popular quantum SDKs was the way
cloud authentication tokens were managed. Specifically, those tokens are often saved
in plain text (in files or environment variables), without requiring an additional au-
thentication factor or having no valability limit set. Consequently, if these tokens
were stolen, the victims could easily be impersonated, allowing the attacker to use
their cloud credits, access their quantum circuit history, or leak private data. Addi-
tionally, we sometimes found that the authentication tokens were placed directly
in source code, meaning that if the source code became public, so would the to-
kens. Well-known solutions to this problem include creating short-lifetime tokens,
requiring multifactor authentication when using them, storing tokens separately
from source code, and prohibiting hard-coding of tokens.

Another vulnerability type we investigated was about the possibility of an end
user to work with corrupted quantum SDK packages.

One way to get into troubles like this is having an attacker running malicious
code on an end user's computer. In such a case, the attacker could tamper with
the victim user’s circuits to steal them, change them, change reported results, in-
ject his own circuits etc. Possible solutions against such attacks would be to use
a file integrity monitoring tool, configured to monitor and protect specifically the
quantum SDK’s files.

Another way for an attacker to compromise quantum SDK packages or files
would be through supply-chain attacks. While this is a very general issue and not
in control of an end-user security solution, it happens, most of the time when the
user downloads SDK packages from untrusted sources. A solution against such an
attack would be to restrict the user downloading files only from trusted sources,
only signed packages, whose authenticity and integrity could be checked based on
trusted certificates, and getting them through trusted channels.

A variant of using a trusted, yet attacker compromised quantum SDK, is to use
a third party, yet untrusted SDK. In quantum software development context, this
could happen if, for instance, a third party transpiler would be needed, to make
special optimizations to a quantum circuit, not provided by the default transpiler
included in the SDK. Such a transpiler could tamper undetectable with the user cir-
cuit, during the transpile phase. Solutions against such attacks could be monitoring
the SDK's processes against deviated activity (like leaking info to suspicious sites)
and obfuscating the quantum circuit provided to the untrusted transpiler. Still,

Quantum Computing Security 69

these are complex problems requiring future research for a better protection.

An important aspect of quantum infrastructure security is about protecting the
intellectual property of quantum customers in the context of untrusted cloud and
quantum providers. This means that quantum users wants to run their quantum cir-
cuits on quantum computers provided remotely through cloud services, but also
wants to keep their circuits and results confidential in spite of possible compro-
mised or untrusted cloud and quantum computer providers. Partial solutions to
such security problems are known to be, at least for classical computing, so-called
trusted execution environments (TEEs). Intel SGX is an example of this kind. A
TEE is launched and protected during its execution by using dedicated hardware
support, such that it could be safely run in an untrusted environment, including
all kind of privileged software (e.g. hypervisor, operating system) and users (e.g.
sysadmins). A TEE's integrity can be attested remotely and during the attestation
process atrusted (i.e. encrypted) channelis established between the TEE and its re-
mote client. This way a quantum user could send her encrypted quantum circuits
to the remote TEE, which can process and send them to the quantum computer
to be run. While being in transit between user and TEE and processed in the TEE,
the quantum circuits are protected. Though, it is not clear if this holds anymore
when being sent to the quantum computer, while this means that they are out of
the TEE not encrypted, in the untrusted environment. We could not evaluate how
much confidential information, relative to the original circuit, an attacker control-
ling that environment is able to extract, because we had no detailed information
regarding the final format of quantum circuits that are run on the quantum com-
puters. Therefore, completely protecting the confidentiality of quantum circuits
remains a challenge to be further researched.

From another perspective, quantum providers might want to keep the confi-
dentiality of their proprietary SDKs run on untrusted quantum users’ computers. This
could be the case, for instance, for particular transpilers, whose functionality might
want to be kept confidential and the transpiled circuits trusted in order to be run
safely on quantum computers. Similarly to keeping confidentiality of quantum
users’ circuits, a possible solution to this kind of threat would be to run the SDK
in a TEE, whose integrity could be attested remotely by quantum providers before
being transferred the SDK. Even more, the resulted transpiled circuits would not
leave the TEE unencrypted and unsigned, such that their integrity could also be
checked by quantum providers before running them on quantum computers.

Quantum Computing Security 70

6.2.2 Classical Attacks on QPUs

We have presented in this paper several attacks on QPU, both classical and quan-
tum attacks. Classical attacks on QPU could be side-channel attacks or attacks
based on pulse level APIs. For side-channel attacks, insider access to quantum
computer enclosure or power usage is needed, which makes preventing such at-
tacks simple to implement, at least in principle. For pulse-based attacks, the quan-
tum computer must expose a pulse API. While some quantum computer providers
provide today this kind of access to help the user experiment and extract the most
performance of current NISQ devices, it is unknown if similar access will be avail-
able on tomorrow’s quantum computers. We did not provide evidence here that
using pulses one can impact qubit calibration, to avoid breaking user license terms
but, in our opinion this can likely be done. In such a case, the frequency and length
of pulses available to the users should be restricted more than what is permitted
today.

6.2.3 Quantum Attacks on Classical Computers

The time horizon for being feasible to execute quantum attacks on classical com-
puter encryption schemes is probably longer than the next several years. How-
ever, attacks where data is collected today to be decrypted later are perfectly
possible. In this context, the migration to quantum-resistant encryption schemes
should be approached with high priority, at least for those applications where data
is required to remain confidential for a longer time. This transition is a complex
process and will not happen overnight. Accordingly, planning this transition should
be started sooner rather than later.

6.2.4 Quantum Attacks on QPUs

Quantum attacks on QPU rely on the attacker and the victim sharing some quan-
tum resources, or being able to use one’s quantum resource to influence another.
An example of the former would be the physical qubits that are being recycled for
each shot in superconducting quantum computers and whose reset operation is
imperfect. An example of the latter, unavoidable cross-talk between qubits can
be used in scenarios where two users share the same QPU at the same time. The
precision of resetting qubits will improve in the future but will probably never be
perfect however, since on all quantum platforms users run their shots in sequence,

Quantum Computing Security 71

defending against an attack involving imperfect qubit reset requires ignoring the
results of the first two or three shots. This is a small price to pay because a typ-
ical user runs thousands of shots. Defending against cross-talk attacks could be
implemented as an antivirus that scans against and identifies malicious circuits.
Alternatively, a protection could perhaps be implemented in the architecture of
guantum computers themselves.

Conclusions

This work examines the various issues present at the intersection of cybersecurity
and quantum computing in the NISQ era, with a focus on security of quantum
computers in particular.

We are approaching a phase in the development of quantum computers in
which today’'s NISQ quantum computers will be replaced by a new generation of
equipment, which will perform practical calculations that are not possible with ex-
isting classical computing. In addition with considerations like performance, scal-
ability and price, the security of those machines becomes important because a
technology with powerful applications like quantum computing will provide strong
incentives for attackers.

In addition to reviewing existing work, we identify new vulnerabilities and attack
vectors that make quantum computers susceptible to attacks. Besides the attack
vectors which are shared with classical computer systems, quantum-specific at-
tack vectors have been discussed. While we attempted a comprehensive approach
when studying the security of quantum computing, the scope of our investigations
was in part restricted by the need to respect the user licenses of those quantum
computing companies that provided public access to their systems.

We thank IBM for providing feedback on this paper and salute their free public
access policy to their quantum computers, which made our work possible. We also
point out that many of our conclusions can apply to other quantum providers and
guantum SDKs and even other cloud-based computational resources.

The purpose of our research is to raise awareness and provide guidance for
both end users, on how to protect their data and computers while running quan-
tum programs, and for quantum computer providers, on how to begin protecting
their infrastructures against possible attacks. This work was a joint effort of re-
searchers from Bitdefender (https://www.bitdefender.com/) and Transilvania Quan-
tum (https://transilvania-quantum.com/).

Appendices

Detailed Analysis of Quantum Programming Workflows
on Different Quantum SKS and Providers

Extending the general quantum programming workflow described in Section 2.4,
in this section we analyze it in more technical details, using different quantum
programming frameworks and also different quantum hardware providers.

Qiskit with IBM Quantum Provider

A quantum hardware provider that is used for this exemplification is IBM. To ac-
cess their resources, two phases are necessary, one in which the user authenti-
cates and one in which it sends the quantum programs. Figure 6.1 describes the
authentication process.

IBM provides a python module, called qiskit_ibm_provider to facilitate the
communication between the Qiskit framework, running on a quantum user’s com-
puter and the quantum provider cloud services. This module contains Python
classes used for authentication, such as Account, AccountManager, as well as classes
used to process the quantum programs, such as IBMProvider, Backend, IBMJjob.
Moreover, it offers the possibility to save the user’s token on user’'s computer as
local file in JSON format, such that at the next authentication it could be loaded
automatically from that file.

To use the IBM’'s quantum hardware, the user must have an account with this
provider. Once the account is activated, a unique token is assigned to that user,
that will be used in the communication with the could services. When the user
renews its token, the old one expires and can no longer be used.

The authentication phase begins in step 1 with a GET /api/version request. It

Quantum Computing Security 74

https://auth.quantum-
computing.ibm.com

IBM Quantum Auth

FY A A
A y l

GET
GET RESPONSE POST fapi/users/| | pecponsE /apifusers/ RESPONSE
Japifvesion loginWithToken me
(2) (4) (6)
(1) (3) (5)
'y F A
A 4 A 4 Y
Qiskit Framework
qiskit_ibm_provider@ P qiskit@ N qiskit_ibm_provider@
@ Account IBMProvider " AccountManager
ISON@"/.qiskit/qiskit-
ibm.json @
Local Machine ®

Figure 6.1: Workflow of authenticating on IBM Quantum platform using Qiskit

Quantum Computing Security 75

fetches (step 2) the server version and checks the compatibility between the Qiskit
framework and the cloud services. Once the checks are performed, authentication
will be attempted using the previously mentioned token. This process is carried
out in step 3 through a POST /api/users/loginWithToken request, which sends the
user’s token to the cloud services as illustrated in Listing 6.1.

Listing 6.1: API token for IBM Quantum Platform

"apiToken":
"e699de4537ab2b80d1263b09902e7fcce910b9b0050270b50ad469dc10d
538ba6f6801cc9adbabadb0c23155cca799a6748111f550b01f78340dd0a
daecbe65a0"

The response of this request (step 4) contains the authorization key, that is a
random generated token, used until the session time expires, or the user logs in
again using the IBMProvider object. It also contains other information about the
created session as illustrated in Listing 6.2.

Listing 6.2: Authenticated user information for IBM Quantum

{
"id": " jVOW5T3fuJlY4mhIfikuj6HR5MRV862MLITKW87WiRSTUMhIfikuj6H",
"ttl": 1209600,
"created": "2023-12-11T11:12:19.9277",
"userId": "97369a485c752b0678272309"
}

The Qiskit python module only knows in advance the authentication URL for
IBM Quantum Platform. In order to find out the URL used to submit circuits, a GET
/api/user/me request is sent (step 5). The response (step 6) contains information
about the authenticated user, as well as the URL to the APIs where circuits can be
submitted. A sample of such URLs could be seen in Listing 6.3.

Listing 6.3: URLs to submit circuits on IBM Quantum Platform

{
"urls": {
"http": "https://api.quantum.ibm.com/api",
"ws": "wss://wss.quantum-computing.ibm.com/",

"services": {

Quantum Computing Security 76

https://api.quantum.ibm.com

I1BM Quantum Cloud

i P S vt vt v 3 A1t § t I
RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE RESPONSE
(2) (4) (6) (8) (10) (12) (14) (16) (18) (20)
GET /runtime/ GET /runtime/ || GET /runtime/ || cer 1 i || GET fruntime/ GET GET
GET backends/ backends/ backends/ backends/ backends/ POST GET Jruntime/ Jruntime/jobs/
/api/Network || 2provider= <ba§kend‘>/ <backen.d>/ \<bac! ot /runtime/jobs /runtime/jobs/ facade/vi/jobs/ || <job-id>/results
(1) <provider> configuration properties (9) (1) (13) <id> <id>/type (19)
) (s) [(15) (7)
L v L) ¥ L 12 L v £ 12 L3 v L 12 L v
Qiskit Framework
qiskit_ibm_provider@
Provider
qiskit@ laiskit_ibm_provider@|___|qiskit_ibm_provider@) o
v QuantumCircuit 1BMJob \BMCircuitiob [7] iskit@Result
qiskit_ibm_provider@
Backend

-

E Local Machine
LR

Figure 6.2: Workflow of using IBM quantum computers with Qiskit

6 "quantumLab": "https://notebooks.quantum-computing.ibm.com",
7 "runtime": "https://api.quantum.ibm.com/runtime"

8 }

3 }

10 }

Once the authentication is performed successfully, a circuit can be sent to the
IBM Cloud Services to be executed. Figure 6.2 shows the data flow that is trans-

mitted between the framework and the cloud services.

IBM provides several quantum hardware on which the circuits can be executed,
and these are available to a user according to the type of account, either paid or
free. Using the REST APIs provided by IBM, the user can ask for a list of quan-
tum systems that can be used, making a GET /runtime/backends/provider=provider
request (step 3 in Figure 6.2). The response (step 4) contains a list of quantum

computers as exemplified in Listing 6.4.

Listing 6.4: Quantum computers on IBM Quantum Pla

2 "devices": [
"simulator_extended_stabilizer",

w

tform

Quantum Computing Security 77

"simulator_mps",
"simulator_statevector",
"simulator_stabilizer",
"ibm_brisbane",
"ibm_kyoto",
"ibm_osaka",
"ibmg_gasm_simulator"

The transpilation process is done locally if the circuit is executed by IBM hard-
ware. Therefore, for this process the hardware details of the chosen backend are
required. In order to have these details, the framework makes few requests to
build the Backend object, according to the specifications given by the cloud ser-
vices. This process is done automatically by the framework, so that there is no
difference for the user regardless of the chosen backend. For example, the follow-
ing requests are sent when using the ibmg_kyoto quantum computer.

GET /runtime/backends/ibmqg_kyoto/configuration (step 5)
GET /runtime/backends/ibmq_kyoto/properties (step 7)
GET /runtime/backends/ibmg_kyoto/defaults (step 9)
GET /runtime/backends/ibmg_kyoto/status (step 11)

Once all the necessary information is gathered, the user’s circuit can be tran-
spiled, after which it can be sent to the backend. The submission of the circuit is
made through a POST /runtime/jobs request (step 13), which will contain metadata
used by the could services along with the circuit which is serialized using the QPY
format. This could be seen in Listing 6.5.

Listing 6.5: Encoded circuit sent to IBM Quantum Platform
"circuits": [
{

"__type__": "QuantumCircuit",

"__value__":
"eJwL9Az299zhZIBkZoAAxkIG7jQGDiCLGYpBgAmMKQYA90bMouT
SzRNfQyMBm4TI1Y5EYturaQkawcibGQgMGVMAIMYyMZpiQZpxK4C
BuUx8iAHYQauSeWpBaCmG1lQIQ6YHFxAQtcl5Lci5wESTGPEOIzd
NFTXoniEQTKC7jawkSRYzOSEZ9iR7cJimm9qYnFpECTZLAICTo
Yk8FqSNDB1Az13X8KkAFIDAAF0OOU="

Quantum Computing Security 78

The response (step 14) to the previously made request contains the id of the
created job that could be used to fetch the results. Listing 6.6 illustrates an exam-
ple of this kind.

Listing 6.6: A job id on IBM Quantum Platform

"id": "6hefkcey2i3nwydpoh4f",
"backend": "ibmg_kyoto"

The remote job is created and placed in a waiting queue. Considering the fact
that several users want to execute circuits using quantum hardware, the result
will not be available immediately. As a consequence, the framework provides a
method through which the user can monitor the status of a submitted job. It peri-
odically checks the status of the job using a GET /runtime/jobs/job-id request (step
15) until it is marked as completed.

The results are also represented as a dictionary object as illustrated in List-
ing 6.7.

Listing 6.7: Results of a job run on IBM Quantum Platform

"data": {

"counts": {
"Ox5": 9,
"Ox4": 17,
"Ox6": 17,
"Ox2": 17,
"Ox3": 20,
"Ox7": 13,
"Ox0": 19,
"Ox1": 16

}

b

Quantum Computing Security 79

Qiskit with lonQ Quantum Provider

Figure 6.3 shows the data that is transmitted between the Qiskit framework, run-
ning on a quantum user’'s computer, cloud services from lonQ quantum provider.
To facilitate the communication between these two, lonQ implements a python
module, named giskit_iong, that contains vendor specific Python classes, such
as Provider, lonQBackend and lonQJob.

To use the hardware from lonQ, an account at this vendor is required. Once
the account is activated, the user can generate one or multiple API-KEYs that will
be used to transmit data to and from the cloud services.

The communication between the Qiskit framework and the cloud services is
made using REST-API requests to https://api.ionqg.co/v0.3. The same address
is used both for authentication and submitting quantum circuits. The authentica-
tion of the user is made through the field "Authorization: api Key $KEY" in
the header of each request, which is filled with the user's API-KEY.

The first step consists in sending a request to submit the circuit to the cloud
services. The circuits that lonQ expects to receive must be in JSON format, while
Qiskit has its own way of storing the information. To maintain compatibility, the
qiskit_iong module encodes the circuit from Qiskit format in the format required
by lonQ, using the method described in Listing 6.8.

Listing 6.8: Convert a Qiskit circuit to a lonQ compatible dict

def giskit_to_ionq(
circuit, backend, passed_args=None,
extra_query_params=None, extra_metadata=None

):
The submitted circuit is represented in Listing 6.9.

Listing 6.9: Circuit initialization

"circuit": [

{
"gate": "x",
"targets": [1 1]
I
{

Ilgatell: IIhII’
"targets": [0 1

https://api.ionq.co/v0.3

Quantum Computing Security 80

https://api.iong.co/v0.3

N
,4’ ‘\\
Ve . lonQ Cloud
K kD 4
N / p
v - \ 4 v
- obs/<i GET RESPONSE
POST /jobs RESPONSE GET /jobs/<job> RESPONSE fiobs/<job>/results
(1) (2) (3) (4) (5) (6)
A A A
v v
Qiskit Framework
giskit_ionqg
@Provider
giskit@ -~ qgiskit_ionq@ o o
¢ QuantumCircuit " lonQJob 7 diskit@Result
qgiskit_ionq@
lonQBackend

Local Machine

Figure 6.3: Workflow of using lonQ quantum computers with Qiskit

20

21

22

23

Quantum Computing Security 81

Ilgatell: Ilhll’
"targets": [1]

Ilgatell: Ilhll’
"targets": [2]

Ilgatell: "X“,
"targets": [1],
"controls": [0]

Moreover, some encoded metadata that provides additional information about
the circuit is filled in the request. The encoding consists in converting the data
that is in JSON format into a string, then a compression is applied using gzip, af-
ter which a base64 encoding is applied. These steps are executed by method
compress_dict_to_metadata_string.

The encoded string found in the request is illustrated in Listing 6.10.

Listing 6.10: Encoded string

"metadata": {
"shots": "128",
"sampler_seed": "None",
"giskit_header":

"H4sTAMD1cWUC120QQrCMBBF r1ImrZK2uPEqpQxJCDUwaZykXah4dyelGHU3VPY
54QXIjpjpnikuHS9IcGIopGE96u0jtB6gQEZzsir8Z0rEPJwPpkV78c23MHgm1yE
2bcKU3DGCVOH4cSOQYyRILGOXeoINVPtp7dNUEG1Tb9syPjauNqg4132sNvmvb6uoAAAA

"

The previously mentioned string is decoded by the cloud services in a JSON
object as illustrated in Listing 6.11.

Listing 6.11: Decoded string as Json file

Quantum Computing Security 82

"memory_slots": 3,
"global_phase": 0.0,
"n_qubits": 3,
"name": "circuit-152",
"creg_sizes": [

["co", 3]
1,
"clbit_labels": [

["co", 01,
["co", 11,
["cO", 2]

1
"greg_sizes": [

["q0", 3]
]I
"qubit_labels": [

["q0", 0 1],
["q0", 11,
["q0", 2]

In step 2, a response with a JSON object is received (see Listing 6.12), which
contains information about the job created, including its id. This job identifier can
be used in the next steps.

Listing 6.12: Submitted job id and status

{
"id": "e8d8028d-9494-4853-b782-3061f4b6b5c7",
"status": "ready",
"request": 5110880341

}

As previously mentioned, there is a method to wait for the execution of a job.
It can be used to know when to move on to the next step. After the program is
executed, the results can be fetched by the user using a GET /jobs/job-id (step 3)
request.

Once the quantum program is executed, the response received in step 4 con-
tains an additional field, which is the URL from where the user can fetch the results

Quantum Computing Security 83

of the executed program. Listing 6.13 show and example of this kind.

Listing 6.13: URL where results can be obtained from

{
"status": "completed",
"results_url": "/v0.3/jobs/lcaad40ca-0733-4c22-8ce9-01baf40f85ee/
— results"
}

Having this URL, the user can get the results by sending a GET results_url request
(step 5). The response is a dictionary that contains the results, similar what can be
seen in Listing 6.14.

Listing 6.14: Results of a circuit execution

{
"0": 0.125000000,
"1": 0.125000000,
"2": 0.125000000,
“3": 0.125000000,
"4": 0.125000000,
"5": 0.125000000,
"6": 0.125000000,
"7": 0.125000000

}

Cirq with lonQ Quantum Provider

An alternative to Qiskit is Cirq framework that will be explained using lonQ hard-
ware. To use the Cirq framework for accessing the lonQ hardware from a quantum
user’'s computer, a python module called cirg_iong is required. The communication
protocol is largely similar to the case of the Qiskit framework, the difference being
the content of some packets that are transmitted between the two components,
i.e. the user's computer and the quantum provider cloud services. Cirq uses differ-
ent Python classes to abstract circuits, such as Service, Ciruit, Job, Result. Figure 6.4
shows the data flow between these two components.

The authentication is similar to the case of Qiskit, using the "Authorization:
api Key $KEY" field in the header of each request. To submit a program, a POST

Quantum Computing Security 84

https://api.iong.co/v0.3

lonQ Cloud
POST /jobs RESPONSE GET /jobs/<job> RESPONSE
(1) (2) (3) (4)

[—

‘ CirQ Framework

cirq_iong@Service

cirq_ionq@ N .
Job > cirg@Result

cirg@Circuit

Local Machine

Figure 6.4: Workflow of using lonQ quantum computers with Cirq

2

Quantum Computing Security 85

/jobs request (step 1) is sent using a specific cloud API. That request contains the
circuit in JSON format as illustrated in Listing 6.15.

Listing 6.15: Cirq circuit definition in JSON format

{
"target": "qpu",
"lang": "json",
"body": {
"gateset": "qgis",
"qubits": 2,
"circuit": [{"gate": "v", "targets": [0]}, {"gate": "cnot", "control
— ": 0, "target": 1}]
b,
"metadata": {"measurement0": "b\u001lfO,1", "shots": "100"},
"shots": "100"
}

The response (step 2) has the same format as on Qiskit, containing the id of the
newly created job. The backend creates a job that will be put in a waiting queue,
to be executed when scheduled based on some policy.

To get the result, periodic GET /jobs/job-id requests are made to check the sta-
tus of the job. When the circuit is executed by the chosen backend, the status of
the job will change, and the result is contained in the request made periodically
by the framework. This is different from Qiskit, where the result must be taken
from another URL. The result is represented as a dictionary object as illustrated in
Listing 6.16.

Listing 6.16: Cirq circuit execution’s results

"data": {
"histogram": {
"0": 0.500000000,
"3": 0.500000000
b
}

Quantum Computing Security 86

https://api.ionq.co/v0.2

lonQ Cloud

R S

4 4

GET
/backends RESPONSE
(1) (2)

POST /jobs RESPONSE GET /jobs/<job> |~ RESPONSE
3) (4) (5) (6)

4 'Y 4

ProjectQ Framework

projectq.backends projectq@

@lonQBackend I MainEngine
dict

T l (state:probability)

list(projectq@

rojectq.type@
BasicEngine) projecta-ty

Qureg

Local Machine

Figure 6.5: Workflow of using lonQ quantum computers with ProjectQ

ProjectQ with lonQ Quantum Provider

Another framework that can be used to execute quantum circuits on lonQ hard-
ware is ProjectQ. A difference between it and Cirg is given by the objects used
for data abstraction. The communication between the framework, running on
guantum user’s computer, and the cloud services is made using REST-API requests
to https://api.ionq.co/v0.2. Figure 6.5 shows the data flow transmitted be-
tween these two components.

The framework can request a list of quantum computers that can be used, mak-
ing a GET /backends request (step 1). The response (step 2) contains a list of quan-
tum hardware as illustrated in Listing 6.17.

Listing 6.17: List of long quantum computers for a ProjectQ program
{

"backend": "gpu.harmony",
"status": "available",

https://api.ionq.co/v0.2

Quantum Computing Security 87

"qubits": 11,

"average_queue_time": 176025567,

"last_updated": 1705500380,

"has_access": false,

"characterization_url": "/characterizations/b6dd937e-1803-44c3-a3e3
< -9215c8ff6b72",

"degraded": false

The POST /jobs request in step 3 is used to submit a circuit. Similar to Cirq, the
circuit is encoded in JSON format. The request has few framework specific fields
as illustrated in Listing 6.18.

Listing 6.18: ProjectQ circuit submission request structure (only specific fields are
shown, the others are simmilar to those in Listing 6.15)
"metadata": {
"sdk": "ProjectQ",
"meas_qubit_ids": "[0O, 1]"
}

The response contains the id of the newly created job. Once the program is
executed, the results are gathered using a GET /jobs/job-id request (step 5).

The results are represented as a dictionary of the form state:probability con-
tained in the histogram field in the response, as illustrated in Listing 6.19.

Listing 6.19: Circuit initialization

{
"histogram": {
"0": 0.500000000,
"3": 0.500000000
}

Bibliography

(1]

[2]

(3]

(4]

(5]

(6]

(/]

(8]

[9]

Shweta Agrawal et al. “Adaptive Simulation Security for Inner Product Func-
tional Encryption”. In: Public-Key Cryptography - PKC 2020. Vol. 12110. 2020,
pp. 34-64.

Amazon Braket SDK. https://github.com/amazon - braket/amazon -
braket-sdk-python. Accessed: 2024-02-01.

Abdullah Ash-Saki, Mahabubul Alam, and Swaroop Ghosh. “Analysis of
Crosstalk in NISQ Devices and Security Implications in Multi-programming
Regime”. In: Proceedings of the ACM/IEEE International Symposium on Low
Power Electronics and Design. 2020, pp. 25-30.

ShiBai et al. “MPSign: A Signature from Small-Secret Middle-Product Learn-
ing with Errors”. In: Public-Key Cryptography - PKC 2020. Vol. 12111. 2020,
pp. 66-93.

Sara Bartolucci et al. “Fusion-based quantum computation”. In: Nature
Communications 14.1 (2023), p. 912.

Ethan Bernstein and Umesh Vazirani. “Quantum Complexity Theory”. In:
Proceedings of the twenty-fifth annual ACM symposium on Theory of comput-
ing. 1993, pp. 11-20.

Bitdefender. What is a Man-in-the-Middle attack (MiTM)? https://www .
bitdefender.com/consumer/support/answer/49038/. Accessed: 2024-
02-07.

Kostas Blekos et al. “A Review on Quantum Approximate Optimization Al-
gorithm and its Variants”. In: arXiv preprint arXiv:2306.09198 (2023).

Kostas Blekos et al. “A review on quantum approximate optimization algo-
rithm and its variants”. In: Physics Reports 1068 (2024), pp. 1-66.

https://github.com/amazon-braket/amazon-braket-sdk-python
https://github.com/amazon-braket/amazon-braket-sdk-python
https://www.bitdefender.com/consumer/support/answer/49038/
https://www.bitdefender.com/consumer/support/answer/49038/

Quantum Computing Security 89

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

Madalina Bolboceanu, Zvika Brakerski, and Devika Sharma. “On Algebraic
Embedding for Unstructured Lattices”. In: IJACR Cryptol. ePrint Arch. (2021/053).
URL: https://eprint.iacr.org/2021/053.

Madalina Bolboceanu et al. “Order-LWE and the Hardness of Ring-LWE with
Entropic Secrets”. In: Advances in Cryptology - ASIACRYPT 2019. Vol. 11922.
Springer, 2019, pp. 91-120.

Hans] Briegel et al. “Measurement-based quantum computation”. In: Na-
ture Physics 5.1 (2009), pp. 19-26.

Zhenyu Cai et al. “Quantum error mitigation”. In: Reviews of Modern Physics
95.4 (2023), p. 045005.

Calibrate Superconducting Qubits with Pulse. https://github.com/Qiskit/
textbook / tree/main/ notebooks / quantum - hardware - pulses. Ac-
cessed: 2024-02-01.

Davide Castelvecchi. “IBM releases first-ever 1,000-qubit quantum chip”.
In: Nature 624.7991 (2023), pp. 238-238.

Gianluigi Catelani et al. “Decoherence of superconducting qubits caused
by quasiparticle tunneling”. In: Physical Review B 86.18 (2012), p. 184514.

M Cerezo et al. “Challenges and opportunities in quantum machine learn-
ing”. In: Nature Computational Science 2.9 (2022), pp. 567-576.

Cirg. https://quantumai.google/cirq. Accessed: 2024-02-01.

Vlad CONSTANTINESCU. Malicious PyPI Packages Bypass Firewall Restrictions

via Cloudflare Tunnels. https://www.bitdefender.com/blog/hotforsecurity/
malicious - pypi - packages - bypass - firewall - restrictions - via-
cloudflare-tunnels/. Accessed: 2024-02-07.

Andrew Cross et al. “OpenQASM 3: A broader and deeper quantum as-

sembly language”. In: ACM Transactions on Quantum Computing 3.3 (2022),
pp. 1-50.

Andrew W Cross et al. “Open quantum assembly language”. In: arXiv preprint
arXiv:1707.03429 (2017).

Andrew W Cross et al. “Validating quantum computers using randomized
model circuits”. In: Physical Review A 100.3 (2019), p. 032328.

https://eprint.iacr.org/2021/053
https://github.com/Qiskit/textbook/tree/main/notebooks/quantum-hardware-pulses
https://github.com/Qiskit/textbook/tree/main/notebooks/quantum-hardware-pulses
https://quantumai.google/cirq
https://www.bitdefender.com/blog/hotforsecurity/malicious-pypi-packages-bypass-firewall-restrictions-via-cloudflare-tunnels/
https://www.bitdefender.com/blog/hotforsecurity/malicious-pypi-packages-bypass-firewall-restrictions-via-cloudflare-tunnels/
https://www.bitdefender.com/blog/hotforsecurity/malicious-pypi-packages-bypass-firewall-restrictions-via-cloudflare-tunnels/

Quantum Computing Security 90

[23] Sanjay Deshpande et al. “Towards an Antivirus for Quantum Computers”.
In: 2022 IEEE International Symposium on Hardware Oriented Security and
Trust (HOST). 2022, pp. 37-40. DOI: 10.1109/H0ST54066.2022.9840181.

[24] Sanjay Deshpande et al. “Towards an Antivirus for Quantum Computers”.
In: 2022 IEEE International Symposium on Hardware Oriented Security and
Trust (HOST). IEEE. 2022, pp. 37-40.

[25] Michel H Devoret, Andreas Wallraff, and John M Martinis. “Superconducting
qubits: A short review”. In: arXiv preprint cond-mat/0411174 (2004).

[26] Yongshan Ding et al. “Systematic crosstalk mitigation for superconducting
qubits via frequency-aware compilation”. In: 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE. 2020, pp. 201-
214,

[27] David P. DiVincenzo. “The Physical Implementation of Quantum Compu-
tation”. In: Fortschritte der Physik 48.9-11 (Sept. 2000), pp. 771-783. ISSN:
1521-3978. DOI: 10.1002/1521-3978(200009)48:9/11<771:: aid -
prop771>3.0.co;2-e. URL: http://dx.doi.org/10.1002/1521-
3978(200009)48:9/11%3C771: : AID- PROP771%3E3.0.C0;2-E.

[28] Jay M Gambetta et al. “Analytic control methods for high-fidelity unitary
operations in a weakly nonlinear oscillator”. In: Physical Review A 83.1 (2011),
p. 012308.

[29] LovKGrover.“AFast Quantum Mechanical Algorithm for Database Search”.
In: Proceedings of the twenty-eighth annual ACM symposium on Theory of com-
puting. 1996, pp. 212-219.

[30] Philipp GUhring. “Concepts against Man-in-the-Browser Attacks”. In: https://www2.futureware.
(2007).

[31] E GUmus et al. “Calorimetry of a phase slip in a Josephson junction”. In:
Nature Physics 19.2 (2023), pp. 196-200.

[32] Eliot Kapit. “The upside of noise: engineered dissipation as a resource in
superconducting circuits”. In: Quantum Science and Technology 2.3 (2017),
p. 033002.

[33] Youngseok Kim et al. “Evidence for the utility of quantum computing before
fault tolerance”. In: Nature 618.7965 (2023), pp. 500-505.

https://doi.org/10.1109/HOST54066.2022.9840181
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11%3C771::AID-PROP771%3E3.0.CO;2-E
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11%3C771::AID-PROP771%3E3.0.CO;2-E

Quantum Computing Security 91

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Morten Kjaergaard et al. “Superconducting qubits: Current state of play”.
In: Annual Review of Condensed Matter Physics 11 (2020), pp. 369-395.

Philip Krantz et al. “A quantum engineer’s guide to superconducting qubits”.
In: Applied physics reviews 6.2 (2019).

Benoit Libert, Damien Stehlé, and Radu Titiu. “Adaptively Secure Distributed
PRFs from LWE". In: Theory of Cryptography - 16th International Conference,
TCC 2018. Vol. 11240. 2018, pp. 391-421.

Benoit Libert and Radu Titiu. “Multi-Client Functional Encryption for Linear
Functions in the Standard Model from LWE". In: Advances in Cryptology -
ASIACRYPT 2019. Vol. 11923. 2019, pp. 520-551.

Benoit Libert et al. “Simulation-Sound Arguments for LWE and Applica-
tions to KDM-CCA2 Security”. In: Advances in Cryptology - ASIACRYPT 2020.
Vol. 12491. 2020, pp. 128-158.

Sam McArdle et al. “Quantum Computational Chemistry”. In: Reviews of
Modern Physics 92.1 (2020), p. 015003.

David C McKay et al. “Efficient Z gates for quantum computing”. In: Physical
Review A 96.2 (2017), p. 022330.

Allen Mi, Shuwen Deng, and Jakub Szefer. “Securing Reset Operations in
NISQ Quantum Computers”. In: Nov. 2022, pp. 2279-2293. DOI: 10.1145/
3548606 .3559380.

Felix Motzoi et al. “Simple pulses for elimination of leakage in weakly non-
linear qubits”. In: Physical review letters 103.11 (2009), p. 110501.

Clemens Mdller et al. “Interacting two-level defects as sources of fluctuating
high-frequency noise in superconducting circuits”. In: Physical Review B 92.3
(2015), p. 035442.

Prakash Murali et al. “Software mitigation of crosstalk on noisy intermediate-
scale quantum computers”. In: Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems. 2020, pp. 1001-1016.

Michael A Nielsen and Isaac L Chuang. Quantum Computation and Quantum
Information. Cambridge university press, 2010.

NIST Post-Quantum Cryptography Standardization. https://csrc.nist.
gov/projects/post-quantum-cryptography. Accessed: 2024-02-07.

https://doi.org/10.1145/3548606.3559380
https://doi.org/10.1145/3548606.3559380
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography

Quantum Computing Security 92

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]
[58]
[59]

[60]

[61]
[62]

NIST to Standardize Encryption Algorithms That Can Resist Attack by Quantum
Computers. https://www.nist.gov/news -events/news/2023/08/
nist - standardize - encryption-algorithms - can- resist - attack-
quantum- computers. Accessed: 2024-02-07.

Open Fermion. https://github. com/quantumlib/OpenFermion. Ac-
cessed: 2024-02-01.

Ankita Pathare and Bharti Deshmukh. “Review on Cryptography Using Quan-
tum Computing”. In: International Journal for Modern Trends in Science and
Technology 8 (01 2022), pp. 141-146.

PennyLane Plugins. https://pennylane.ai/plugins/. Accessed: 2024-
02-01.

Michael Peterer. “Experiments on multi-level superconducting qubits and
coaxial circuit QED". PhD thesis. University of Oxford, 2016.

Koustubh Phalak et al. “Quantum PUF for Security and Trust in Quantum
Computing”. In: IEEE Journal on Emerging and Selected Topics in Circuits and
Systems 11.2 (2021), pp. 333-342.

POC for classical attacks. https://github.com/Transilvania-Quantum/
quantum-computing-security-investigations. Accessed: 2024-07-01.

John Preskill. “Quantum computing in the NISQ era and beyond”. In: Quan-
tum 2 (2018), p. 79.

FIPS PUB. “Digital signature standard (DSS)". In: Fips pub (2000), pp. 186-
192.

NIST FIPS Pub. “197: Advanced encryption standard (AES)". In: Federal in-
formation processing standards publication 197.441 (2001), p. 0311.

pypi. https://pypi.org/. Accessed: 2024-02-07.
Pyquil. https://github.com/rigetti/pyquil. Accessed: 2024-02-01.

Pytket. https://cqcl.github.io/tket/pytket/api/. Accessed: 2024-
02-01.

Q Sharp. https://learn.microsoft.com/en-us/azure/quantum/
overview-what-is-qgsharp-and-qdk. Accessed: 2024-02-01.

qBraid. https://github.com/gBraid/gBraid. Accessed: 2024-02-01.
QIR Alliance. https://www.gir-alliance.org/. Accessed: 2024-02-01.

https://www.nist.gov/news-events/news/2023/08/nist-standardize-encryption-algorithms-can-resist-attack-quantum-computers
https://www.nist.gov/news-events/news/2023/08/nist-standardize-encryption-algorithms-can-resist-attack-quantum-computers
https://www.nist.gov/news-events/news/2023/08/nist-standardize-encryption-algorithms-can-resist-attack-quantum-computers
https://github.com/quantumlib/OpenFermion
https://pennylane.ai/plugins/
https://github.com/Transilvania-Quantum/quantum-computing-security-investigations
https://github.com/Transilvania-Quantum/quantum-computing-security-investigations
https://pypi.org/
https://github.com/rigetti/pyquil
https://cqcl.github.io/tket/pytket/api/
https://learn.microsoft.com/en-us/azure/quantum/overview-what-is-qsharp-and-qdk
https://learn.microsoft.com/en-us/azure/quantum/overview-what-is-qsharp-and-qdk
https://github.com/qBraid/qBraid
https://www.qir-alliance.org/

Quantum Computing Security 93

[63] Qiskit. https://github.com/Qiskit. Accessed: 2024-02-01.

[64] Qiskit Finance. https://github. com/qiskit - community/qiskit -
finance. Accessed: 2024-02-01.

[65] Qiskit Machine Learing. https://github . com/giskit - community /
giskit-machine-learning. Accessed: 2024-02-01.

[66] Qiskit Nature. https://github. com/qgiskit - community /giskit -
nature. Accessed: 2024-02-01.

[67] Qiskit Optmization. https://github.com/qiskit- community/qiskit-
optimization. Accessed: 2024-02-01.

[68] QPY Serialization Format. https://docs.quantum.ibm.com/api/qiskit/
qpy. Accessed: 2024-02-01.

[69] Quantum-Readiness: Migration to Post-Quantum Cryptography. https://
www . Cisa.gov/resources - tools/ resources/quantum- readiness -
migration-post-quantum-cryptography. Accessed: 2024-02-07.

[70] Quil. https://github.com/quil-lang/quil. Accessed: 2024-02-01.

[711 Mark Randolph and William Diehl. “Power side-channel attack analysis: A
review of 20 years of study for the layman”. In: Cryptography 4.2 (2020),
p. 15.

[72] Ronald L Rivest, Adi Shamir, and Leonard Adleman. “A method for obtaining
digital signatures and public-key cryptosystems”. In: Communications of the
ACM 21.2 (1978), pp. 120-126.

[73] Miruna Rosca, Damien Stehlé, and Alexandre Wallet. “On the Ring-LWE and
Polynomial-LWE Problems”. In: Advances in Cryptology - EUROCRYPT 2018.
Vol. 10820. 2018, pp. 146-173.

[74] Miruna Rosca et al. “Middle-Product Learning with Errors”. In: Advances in
Cryptology - CRYPTO 2017. Vol. 10403. 2017, pp. 283-297.

[75] Abdullah Ash Saki and Swaroop Ghosh. Qubit Sensing: A New Attack Model for
Multi-programming Quantum Computing. 2021. arXiv: 2104 .05899 [quant-ph].

[76] Abdullah Ash Saki, Rasit Onur Topaloglu, and Swaroop Ghosh. Shuttle-
Exploiting Attacks and Their Defenses in Trapped-lon Quantum Computers. 2021.
arXiv: 2108.01054 [quant-ph].

https://github.com/Qiskit
https://github.com/qiskit-community/qiskit-finance
https://github.com/qiskit-community/qiskit-finance
https://github.com/qiskit-community/qiskit-machine-learning
https://github.com/qiskit-community/qiskit-machine-learning
https://github.com/qiskit-community/qiskit-nature
https://github.com/qiskit-community/qiskit-nature
https://github.com/qiskit-community/qiskit-optimization
https://github.com/qiskit-community/qiskit-optimization
https://docs.quantum.ibm.com/api/qiskit/qpy
https://docs.quantum.ibm.com/api/qiskit/qpy
https://www.cisa.gov/resources-tools/resources/quantum-readiness-migration-post-quantum-cryptography
https://www.cisa.gov/resources-tools/resources/quantum-readiness-migration-post-quantum-cryptography
https://www.cisa.gov/resources-tools/resources/quantum-readiness-migration-post-quantum-cryptography
https://github.com/quil-lang/quil
https://arxiv.org/abs/2104.05899
https://arxiv.org/abs/2108.01054

Quantum Computing Security 94

[77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

Abdullah Ash Saki et al. A Survey and Tutorial on Security and Resilience of
Quantum Computing. 2021. arXiv: 2106.06081 [quant-ph].

Abdullah Ash Saki et al. “Split Compilation for Security of Quantum Circuits”.
In: 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD).
IEEE. 2021, pp. 1-7.

Mohan Sarovar et al. “Detecting Crosstalk Errors in Quantum Information
Processors”. In: Quantum 4 (2020), p. 321.

Peter W Shor. “Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer”. In: SIAM review 41.2 (1999),
pp. 303-332.

Daniel R Simon. “On the power of quantum computation”. In: SIAM journal
on computing 26.5 (1997), pp. 1474-1483.

Sergei Slussarenko and Geoff] Pryde. “Photonic quantum information pro-
cessing: A concise review". In: Applied Physics Reviews 6.4 (2019).

Kaitlin N Smith et al. “Programming physical quantum systems with pulse-
level control”. In: Frontiers in Physics 10 (2022), p. 900099.

Silviu Stahie. Supply Chain Attack Detected in PyPI Library. https://www.
bitdefender . com/blog/hotforsecurity/supply - chain - attack -
detected-in-pypi-library/. Accessed: 2024-02-07.

StrawberryFields. https://strawberryfields.ai/. Accessed: 2024-02-
01.

L Sun et al. “Measurements of quasiparticle tunneling dynamics in a band-
gap-engineered transmon qubit”. In: Physical review letters 108.23 (2012),
p. 230509.

Aakarshitha Suresh et al. “A quantum circuit obfuscation methodology for
security and privacy”. In: arXiv preprint arXiv:2104.05943 (2021).

Robert S Sutor. Dancing with Qubits: How quantum computing works and how
it can change the world. Packt Publishing Ltd, 2019.

Jerry Tan et al. Extending and Defending Attacks on Reset Operations in Quan-
tum Computers. 2023. arXiv: 2309.06281 [cs.AR].

https://arxiv.org/abs/2106.06081
https://www.bitdefender.com/blog/hotforsecurity/supply-chain-attack-detected-in-pypi-library/
https://www.bitdefender.com/blog/hotforsecurity/supply-chain-attack-detected-in-pypi-library/
https://www.bitdefender.com/blog/hotforsecurity/supply-chain-attack-detected-in-pypi-library/
https://strawberryfields.ai/
https://arxiv.org/abs/2309.06281

Quantum Computing Security 95

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

Bitdefender Cryptography Research Team. Private Set Intersection from Ho-
momorphic Encryption: A Python Implementation. https://bit-ml.github.
io/blog/post/private-set-intersection-an-implementation-in-
python/. Accessed: 2024-02-07.

Tensorflow. https://www.tensorflow.org/quantum. Accessed: 2024-02-
01.

The LLVM Compiler Infrastructure. https://1lvm.org/. Accessed: 2024-03-
01.

The State of Quantum Open Source Software 2023: Survey Results. https :
//unitary.fund/posts/2023_survey_results/. Accessed: 2024-04-01.

Jules Tilly et al. “The variational quantum eigensolver: a review of methods
and best practices”. In: Physics Reports 986 (2022), pp. 1-128.

Tket. https://www.quantinuum. com/developers/tket. Accessed:
2024-02-01.

Chen Wang et al. “Measurement and control of quasiparticle dynamics in
a superconducting qubit”. In: Nature communications 5.1 (2014), p. 5836.

Goran Wendin and VS Shumeiko. “Quantum bits with Josephson junctions”.
In: Low Temperature Physics 33.9 (2007), pp. 724-744.

John van de Wetering. “ZX-calculus for the Working Quantum Computer
Scientist”. In: arXiv preprint arXiv:2012.13966 (2020).

Karen Wintersperger et al. “Neutral atom quantum computing hardware:
performance and end-user perspective”. In: EP/ Quantum Technology 10.1
(2023), p. 32.

ChuanqiXu, Ferhat Erata, and Jakub Szefer. “Classification of quantum com-
puter fault injection attacks”. In: arXiv preprint arXiv:2309.05478 (2023).

Chuangqi Xu, Ferhat Erata, and Jakub Szefer. “Exploration of Quantum Com-
puter Power Side-Channels"”. In: arXiv preprint arXiv:2304.03315 (2023).

https://bit-ml.github.io/blog/post/private-set-intersection-an-implementation-in-python/
https://bit-ml.github.io/blog/post/private-set-intersection-an-implementation-in-python/
https://bit-ml.github.io/blog/post/private-set-intersection-an-implementation-in-python/
https://www.tensorflow.org/quantum
https://llvm.org/
https://unitary.fund/posts/2023_survey_results/
https://unitary.fund/posts/2023_survey_results/
https://www.quantinuum.com/developers/tket

Authors’ contacts

Madalina Bolboceanu: mbolboceanu@bitdefender.com
Sorin Bolos: sorin.bolos@transilvania-quantum.com
Adrian Colesa: acolesa@bitdefender.com

Andrei Kisari: akisari@bitdefender.com

Andrei Lutas: viutas@bitdefender.com

Dan Lutas: dlutas@bitdefender.com

Radu Marginean: radu.marginean@transilvania-quantum.com
Andrei Muntea: amuntea@bitdefender.com

Radu Portase: rportase@bitdefender.com

Miruna Rosca: mrosca@bitdefender.com

Public resources

https://github.com/Transilvania-Quantum/quantum-computing-security-investigations

https://github.com/Transilvania-Quantum/quantum-computing-security-investigations

	Executive Summary
	Introduction
	Quantum Computing Overview
	Quantum Bits, Gates, Circuits and Computers
	Quantum Computer Providers
	Open-Source Quantum Software Development Kits (SDKs)
	Quantum Programming Workflow
	Quantum Computers Today

	Threat Models
	Classical Attacks on Quantum Computing Software Stack
	Classical Attacks on Quantum Processing Units (QPUs)
	Quantum Attacks on Classical Computers
	Quantum Algorithms and Security on Internet
	Post-Quantum Cryptography
	The Transition to PQC

	Quantum Attacks on QPUs

	Attack Vectors
	Classical Attacks on Quantum Computing Software Stack
	Supply Chain Attacks
	Compromised Quantum User's Computer
	Untrusted Transpilers
	Plain-Text Authentication Tokens
	Man-in-the-Middle (MitM)
	DNS / IP Spoofing
	Man-in-the-Browser (MitB)
	Denial of Service (DoS)
	Untrusted Quantum Providers
	Untrusted Quantum Users

	Classical Attacks on QPUs
	Attacking QPU Calibration Using the Pulse API
	Side-Channel Attacks
	Scheduler Attacks

	Quantum Attacks on Classical Computers
	Quantum Algorithms

	Quantum Attacks on QPUs
	The |11..1 State Initialization Attack
	Accessing Higher Energy States Attacks
	Readout Attacks in Multi-tenant Environments
	Readout Attacks in Single-tenant Environments
	Cross-Talk Attacks
	Shuttle Exploiting in Trapped-Ions Quantum Computers

	Research, Analysis and Experiments
	Classical Attacks on Quantum Computing Software Stack
	Attacking the API Authentication Tokens
	Quantum Circuit Hidden Alteration

	Classical Attacks on QPUs
	Attacking QPU Calibration Using the Pulse API

	Quantum Attacks on Classical Computers
	Quantum Attacks on QPUs
	Experiments on Qubit Reset Attacks
	Fault Injection Attacks
	Exploring the Potential for Cross-Talk Attacks

	Reflections on Quantum Computer Related Security
	Importance of Our Investigation
	Attacks and Defenses
	Classical Attacks on Quantum Computing Software Stack
	Classical Attacks on QPUs
	Quantum Attacks on Classical Computers
	Quantum Attacks on QPUs

	Conclusions
	Appendices

