
#BHUSA @BlackHatEvents

All Your Secrets Belong to Us:
Leveraging Firmware Bugs to Break TEEs

Tom Dohrmann 



#BHUSA @BlackHatEvents

whoami

• Tom Dohrmann

• Low-level enthusiast

• Coding

• Hacking



#BHUSA @BlackHatEvents

Outline

• Short Intro to TEEs and AMD SEV-SNP

• Prerequisites

• Platform Security Processor & Firmware

• Reverse Map Table

• Bug #1

• Simple Exploit

• Improved Exploit

• Bug #2

• Exploit

• Wrap-up and take-aways



#BHUSA @BlackHatEvents

What‘s a TEE Anyway?

• TEE = Trusted Execution Environment

• A secure area of a main processor

• Workloads are protected from conventionally privileged parts of an OS e.g. the kernel

• For a lot of applications leakage of secrets is a bad as arbitrary code execution.

• Many implementations:

• AMD SEV(-ES/-SNP)

• Intel SGX, Intel TDX

• Arm TrustZone, Arm CCA

• IBM SE

• RISC-V CoVE

• NVIDIA H100

→ “Compromising Confidential Compute, One Bug at a Time”



#BHUSA @BlackHatEvents

Very Short Intro to AMD SEV-SNP

• AMD SEV-SNP implements a Trusted Execution Environment (TEE).

• It aims to shield protected virtual machines from untrusted and even malicious 

hypervisors.

• All data and code is encrypted and integrity protected.

• Upon creation of a VM, the initial memory contents are measured and can be verified 

through attestation reports.



#BHUSA @BlackHatEvents

Platform Security Processor (PSP)

• The Platform Security Processor is a highly privileged components of AMD SoCs.

• In the context of SEV, the PSP implements the root of trust and is required to create, 

attest, migrate, delete SEV-SNP virtual machines.

• The SEV firmware is also used with the SEV-SNP’s predecessors, SEV and SEV-ES.

• The firmware can be live-updated.

• Parts of the firmware were published in August 2023.

https://github.com/amd/AMD-ASPFW


#BHUSA @BlackHatEvents

Reverse Map Table (RMP)

• The RMP is used to protect the integrity of memory.

• It contains an entry for every guest-assignable page of memory to track its state.

• Before every write access, the CPU checks the RMP to decide whether the access is 

allowed. These checks are done for all privilege levels including hypervisor and SMM 

accesses.

• The firmware is more privileged and can write to any memory → It needs to do these 

checks manually.

• The RMP is managed by the CPU through special instructions and by the SEV firmware.

• A lot of trust is put into the RMP permission and state checks being enforced correctly 

(foreshadowing!).



#BHUSA @BlackHatEvents

Reverse Map Table (RMP)

• Each page can be owned by the hypervisor, a virtual machine, or the SEV firmware.

Hypervisor

Guest ASID=1

Firmware

Guest ASID=1

Hypervisor

Hypervisor

Guest ASID=2

Firmware

…

0x000000-0x1FFFFF

0x200000-0x3FFFFF

0x400000-0x5FFFFF

0x600000-0x7FFFFF

0x800000-0x9FFFFF

0xA00000-0xBFFFFF

0xC00000-0xDFFFFF

0xE00000-0xFFFFFF

…



#BHUSA @BlackHatEvents

CVE-2024-21980



#BHUSA @BlackHatEvents

Command Dispatch

1. The hypervisor writes the request to memory.

Hypervisor

Firmware

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000

0x7000

1



#BHUSA @BlackHatEvents

Command Dispatch

1. The hypervisor writes the request to memory.

2. The hypervisor donates the page to the firmware.

3. The hypervisor tells the firmware about the request.

4. The firmware reads the request.

5. The firmware processes the request.

6. The firmware writes the response back.

7. The firmware tells the hypervisor it’s done.

8. The hypervisor reads the response.

Hypervisor

Firmware

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000

0x7000

1

3

4

5
6

8
7

2



#BHUSA @BlackHatEvents

Command Dispatch

1. The hypervisor writes the request to memory.

2. The hypervisor donates the page to the firmware.

3. The hypervisor tells the firmware about the request.

4. The firmware reads the request.

5. The firmware processes the request.

6. The firmware writes the response back.

7. The firmware tells the hypervisor it’s done.

8. The hypervisor reads the response.

9. The hypervisor asks the firmware to reclaim the page.

TL;DR: Command requests and responses are written to regular memory.

→ During step 6, the firmware needs to check whether it’s allowed to write to memory.

Hypervisor

Firmware

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000

0x7000

1

3

4

5
6

8
7

2 9



#BHUSA @BlackHatEvents

Command Dispatch (w/o Response)

1. The hypervisor writes the request to memory.

2. The hypervisor donates the page to the firmware.

3. The hypervisor tells the firmware about the request.

4. The firmware reads the request.

5. The firmware processes the request.

6. The firmware writes the response back.

7. The firmware tells the hypervisor it’s done.

8. The hypervisor reads the response.

9. The hypervisor reclaims the page.

→ The firmware only has to check the RMP if it writes back a response.

Hypervisor

Firmware

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000

0x7000

1

3

4

5
6

8
7

2 9



#BHUSA @BlackHatEvents

Command Buffer Type RMP Write Checks

INIT Input Only No

SHUTDOWN Ignore No

PLATFORM_RESET Ignore No

PLATFORM_STATUS Output Only Yes

… … …

ATTESTATION Input & Output & Error No

SEND_START Input & Output & Error Yes

SEND_UPDATE_DATA Input & Output & Error Yes

SEND_UPDATE_VMSA Input & Output & Error Yes

Bug #1
One Of These It Not Like The Others…



#BHUSA @BlackHatEvents

Command Dispatch

1. The hypervisor writes the request to memory.

Hypervisor

Firmware

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000

0x7000

1



#BHUSA @BlackHatEvents

Command Dispatch

1. The hypervisor writes the request to memory.

2. The hypervisor donates the page to the firmware.

3. The hypervisor tells the firmware about the request.

4. The firmware reads the request.

5. The firmware processes the request.

6. The firmware writes the response back.

7. The firmware tells the hypervisor it’s done.

8. The hypervisor reads the response.

Hypervisor

Firmware

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000

0x7000

1

3

4

5
6

8
7

2



#BHUSA @BlackHatEvents

Command Dispatch

1. The hypervisor writes the request to memory.

2. The hypervisor donates the page to the firmware.

3. The hypervisor tells the firmware about the request.

4. The firmware reads the request.

5. The firmware processes the request.

6. The firmware writes the response back.

7. The firmware tells the hypervisor it’s done.

8. The hypervisor reads the response.

9. The hypervisor asks the firmware to reclaim the page.

→ The firmware just corrupted the memory of a protected guest.

Hypervisor

Firmware

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000

0x7000

1

3

4

5
6

8
7

2 9



#BHUSA @BlackHatEvents

Primitive Exploit

Hypervisor

SEV Firmware

Guest Memory

ATTESTATION

result=0x000000d0 The value is fixed, but we 
can choose the location
(with some limitations).



#BHUSA @BlackHatEvents

Choosing a Target

• It’s not always easy to know what each guest memory region contains.

0x000000-0x1FFFFF

0x200000-0x3FFFFF

0x400000-0x5FFFFF

0x600000-0x7FFFFF

0x800000-0x9FFFFF

0xA00000-0xBFFFFF

0xC00000-0xDFFFFF

0xE00000-0xFFFFFF

Kernel Code?

Kernel Data?

User Code?

User Data?

Secrets?



#BHUSA @BlackHatEvents

Choosing a Target

• The attacker has very little control over the plaintext values for the corrupted ciphertext.

CC 54 C3 D4 B5 D2 29 06 ...D0 00 00 00 C3 2F 1E 81 ...

Ciphertext Plaintext

55 48 89 E5 48 83 EC 10 ...6D 4A 0D CE F9 82 C2 53 ...

Ciphertext Plaintext



#BHUSA @BlackHatEvents

Attacking the guest directly is possible, but …
… It’s far from trivial and …
… Exploits will likely have to be tailored to specific 
workloads.



#BHUSA @BlackHatEvents

Attacking the Firmware

Hypervisor

SEV Firmware

Guest Memory

ATTESTATION

result=0x000000d0



#BHUSA @BlackHatEvents

Guest Context Pages

• Guest context pages contain metadata about a guest.

• Marked as owned by the SEV firmware in the RMP using a special CONTEXT state.

• Guest context pages are encrypted.



#BHUSA @BlackHatEvents

UMC Key Seed

51 7E 7B D1 B1 66 DA FE 05 D3 E8 A3 F7 AE E5 CA

Offline Encryption Key

16 04 B4 B1 51 3C 05 21 76 EA A4 9F 28 20 CD 54

…

Launch Digest

81 B6 EC B6 BD D9 93 20 C0 D1 C6 57 54 3D C1 23

…

Offline Encryption IV Handle Policy

00 00 00 00 00 00 00 00 00 00 00 00 SMT

State ASID CCXs Guest Flags

RUNNING D6 01 00 00 FF 00 00 00 SEV-ES

…

Guest Context Pages



#BHUSA @BlackHatEvents

UMC Key Seed

51 7E 7B D1 B1 66 DA FE 05 D3 E8 A3 F7 AE E5 CA

Offline Encryption Key

16 04 B4 B1 51 3C 05 21 76 EA A4 9F 28 20 CD 54

…

Launch Digest

81 B6 EC B6 BD D9 93 20 C0 D1 C6 57 54 3D C1 23

…

Offline Encryption IV Handle Policy

00 00 00 00 00 00 00 00 00 00 00 00 SMT

State ASID CCXs Guest Flags

RUNNING D6 01 00 00 FF 00 00 00 SEV-ES

…

Guest Context Pages



#BHUSA @BlackHatEvents

• When the guest is created, the firmware uses a secure RNG to generate the UMC key 

seed.

• Before the guest is first used, the firmware programs the UMC key seed into all the 

Unified Memory Controllers (UMC) on the platform.

• The UMCs use this key seed to derive the guest’s encryption key.

UMC Key Seed

51 7E 7B D1 B1 66 DA FE 05 D3 E8 A3 F7 AE E5 CA

Offline Encryption Key

16 04 B4 B1 51 3C 05 21 76 EA A4 9F 28 20 CD 54

Guest Context Pages



#BHUSA @BlackHatEvents

UMC Key Seed

51 7E 7B D1 B1 66 DA FE 05 D3 E8 A3 F7 AE E5 CA

Offline Encryption Key

16 04 B4 B1 51 3C 05 21 76 EA A4 9F 28 20 CD 54

…

Launch Digest

81 B6 EC B6 BD D9 93 20 C0 D1 C6 57 54 3D C1 23

…

Offline Encryption IV Handle Policy

00 00 00 00 00 00 00 00 00 00 00 00 SMT

State ASID CCXs Guest Flags

RUNNING D6 01 00 00 FF 00 00 00 SEV-ES

…

Guest Context Pages



#BHUSA @BlackHatEvents

UMC Key Seed

D0 00 00 00 B1 66 DA FE 05 D3 E8 A3 F7 AE E5 CA

Offline Encryption Key

16 04 B4 B1 51 3C 05 21 76 EA A4 9F 28 20 CD 54

…

Launch Digest

81 B6 EC B6 BD D9 93 20 C0 D1 C6 57 54 3D C1 23

…

Offline Encryption IV Handle Policy

00 00 00 00 00 00 00 00 00 00 00 00 SMT

State ASID CCXs Guest Flags

RUNNING D6 01 00 00 FF 00 00 00 SEV-ES

…

Guest Context Pages



#BHUSA @BlackHatEvents

UMC Key Seed

D0 D0 00 00 00 66 DA FE 05 D3 E8 A3 F7 AE E5 CA

Offline Encryption Key

16 04 B4 B1 51 3C 05 21 76 EA A4 9F 28 20 CD 54

…

Launch Digest

81 B6 EC B6 BD D9 93 20 C0 D1 C6 57 54 3D C1 23

…

Offline Encryption IV Handle Policy

00 00 00 00 00 00 00 00 00 00 00 00 SMT

State ASID CCXs Guest Flags

RUNNING D6 01 00 00 FF 00 00 00 SEV-ES

…

Guest Context Pages



#BHUSA @BlackHatEvents

UMC Key Seed

D0 D0 D0 00 00 00 DA FE 05 D3 E8 A3 F7 AE E5 CA

Offline Encryption Key

16 04 B4 B1 51 3C 05 21 76 EA A4 9F 28 20 CD 54

…

Launch Digest

81 B6 EC B6 BD D9 93 20 C0 D1 C6 57 54 3D C1 23

…

Offline Encryption IV Handle Policy

00 00 00 00 00 00 00 00 00 00 00 00 SMT

State ASID CCXs Guest Flags

RUNNING D6 01 00 00 FF 00 00 00 SEV-ES

…

Guest Context Pages



#BHUSA @BlackHatEvents

UMC Key Seed

D0 D0 D0 D0 00 00 00 FE 05 D3 E8 A3 F7 AE E5 CA

Offline Encryption Key

16 04 B4 B1 51 3C 05 21 76 EA A4 9F 28 20 CD 54

…

Launch Digest

81 B6 EC B6 BD D9 93 20 C0 D1 C6 57 54 3D C1 23

…

Offline Encryption IV Handle Policy

00 00 00 00 00 00 00 00 00 00 00 00 SMT

State ASID CCXs Guest Flags

RUNNING D6 01 00 00 FF 00 00 00 SEV-ES

…

Guest Context Pages



#BHUSA @BlackHatEvents

UMC Key Seed

D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0

Offline Encryption Key

00 00 00 B1 51 3C 05 21 76 EA A4 9F 28 20 CD 54

…

Launch Digest

81 B6 EC B6 BD D9 93 20 C0 D1 C6 57 54 3D C1 23

…

Offline Encryption IV Handle Policy

00 00 00 00 00 00 00 00 00 00 00 00 SMT

State ASID CCXs Guest Flags

RUNNING D6 01 00 00 FF 00 00 00 SEV-ES

…

Guest Context Pages



#BHUSA @BlackHatEvents

UMC Key Seed

D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0

Offline Encryption Key

00 00 00 B1 51 3C 05 21 76 EA A4 9F 28 20 CD 54

…

Launch Digest

81 B6 EC B6 BD D9 93 20 C0 D1 C6 57 54 3D C1 23

…

Offline Encryption IV Handle Policy

00 00 00 00 00 00 00 00 00 00 00 00 SMT

State ASID CCXs Guest Flags

RUNNING D6 01 00 00 FF 00 00 00 SEV-ES

…

Guest Context Pages

UMC Key Seed

D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0 D0

Offline Encryption Key

00 00 00 B1 51 3C 05 21 76 EA A4 9F 28 20 CD 54

…

Launch Digest

81 B6 EC B6 BD D9 93 20 C0 D1 C6 57 54 3D C1 23

…

Offline Encryption IV Handle Policy

00 00 00 00 00 00 00 00 00 00 00 00 SMT | DEBUG

State ASID CCXs Guest Flags

RUNNING D6 01 00 00 FF 00 00 00 SEV-ES

…

Victim guest
Attacker guest with 

debugging enabled

Identical Key Seeds = Identical Encryption Keys



#BHUSA @BlackHatEvents

Guest Context Pages

• Guest context pages contain metadata about a guest.

• Marked as owned by the SEV firmware in the RMP using a special CONTEXT state.

• Guest context pages are encrypted.

UMC Key Seed

3A CB 3E 3D F6 8F 1F BC ...

UMC Key Seed

D0 D0 D0 D0 D0 D0 D0 D0 ...

Ciphertext Plaintext



#BHUSA @BlackHatEvents

UMC Key Seed

D0 D0 D0 D0 D0 D0 D0 D0 ...

Location-Dependent Encryption

• All guest context pages are encrypted using the same key, but use a physical-address-

dependent IV.

→We have to use the same physical address for the guest and attacker context pages.

→We have to shut the victim guest down before starting the attack guest.

UMC Key Seed

0F 50 3A A0 2A 0A 01 15 ...

UMC Key Seed

3A CB 3E 3D F6 8F 1F BC ...

UMC Key Seed

D0 D0 D0 D0 D0 D0 D0 D0 ...

Ciphertext at 0x2000 Plaintext at 0x2000

IV=f(0x5000)

IV=f(0x2000)

Ciphertext at 0x5000 Plaintext at 0x5000



#BHUSA @BlackHatEvents

Improved Exploit

1. Launch victim guest.

2. Corrupt UMC key seed with fixed values.

3. Run victim guest and records its encrypted memory.

4. Decommission victim guest.

5. Launch attacker guest at the same location with debug options enabled.

6. Corrupt UMC key seed with the same fixed values.

7. Use debug commands with the attacker guest to decrypt the memory of the victim 

guest.



#BHUSA @BlackHatEvents

Demo



#BHUSA @BlackHatEvents



#BHUSA @BlackHatEvents

CVE-2024-21978



#BHUSA @BlackHatEvents

Bug #2

• The firmware stores some certificates in non-volatile storage.

• The INIT_EX command can be used to ask the firmware to use regular memory instead 

of on-chip SPI flash for non-volatile storage.

• The hypervisor has to donate memory to the firmware by converting some memory into 

the FIRMWARE state.

• The firmware only checks that the memory is in the FIRMWARE state when INIT_EX is 

executed. All following accesses skip the access checks.

• The hypervisor can use the PAGE_RECLAIM command to ask the firmware to convert 

unused FIRMWARE memory back into hypervisor state.

→ PAGE_RECLAIM doesn’t whether the address is being used for non-volatile storage.



#BHUSA @BlackHatEvents

Rough Plan of Attack

1. Convert some memory into the FIRMWARE state.

2. Use that memory with INIT_EX as non-volatile storage.

3. Reclaim the memory using PAGE_RECLAIM.

4. Assign the memory to a guest.

5. Trigger a command that causes the firmware to non-volatile storage.



#BHUSA @BlackHatEvents

Can We Better Than Exploit #1?

• Last time we were limited by the fixed value of the memory corruption.

• The PDH_GEN command regenerates some certificates and writes ~3 pages of random 

data to the memory backing used for non-volatile storage.



#BHUSA @BlackHatEvents

UMC Key Seed

51 7E 7B D1 B1 66 DA FE 05 D3 E8 A3 F7 AE E5 CA

Offline Encryption Key

16 04 B4 B1 51 3C 05 21 76 EA A4 9F 28 20 CD 54

…

Launch Digest

81 B6 EC B6 BD D9 93 20 C0 D1 C6 57 54 3D C1 23

…

Offline Encryption IV Handle Policy

00 00 00 00 00 00 00 00 00 00 00 00 SMT

State ASID CCXs Guest Flags

RUNNING D6 01 00 00 FF 00 00 00 SEV-ES

…

Guest Context Pages



#BHUSA @BlackHatEvents

UMC Key Seed

51 7E 7B D1 B1 66 DA FE 05 D3 E8 A3 F7 AE E5 CA

Offline Encryption Key

16 04 B4 B1 51 3C 05 21 76 EA A4 9F 28 20 CD 54

…

• Corrupting the UMC key seed isn’t very useful because we have no control of the value.

Guest Context Pages



#BHUSA @BlackHatEvents

UMC Key Seed

51 7E 7B D1 B1 66 DA FE 05 D3 E8 A3 F7 AE E5 CA

Offline Encryption Key

16 04 B4 B1 51 3C 05 21 76 EA A4 9F 28 20 CD 54

…

Launch Digest

81 B6 EC B6 BD D9 93 20 C0 D1 C6 57 54 3D C1 23

…

Offline Encryption IV Handle Policy

00 00 00 00 00 00 00 00 00 00 00 00 SMT

State ASID CCXs Guest Flags

RUNNING D6 01 00 00 FF 00 00 00 SEV-ES

…

Guest Context Pages



#BHUSA @BlackHatEvents

Offline Encryption IV Handle Policy

00 00 00 00 00 00 00 00 00 00 00 00 SMT

State ASID CCXs Guest Flags

RUNNING D6 01 00 00 FF 00 00 00 SEV-ES

…

Guest Context Pages
• After the UMC key seed has been programmed into the UMC, the encryption unit in the 

memory controller uses the address space identifier (ASID) to look up the encryption key 

for a guest.



#BHUSA @BlackHatEvents

Offline Encryption IV Handle Policy

F7 CC FD 61 9E D9 3D FF 4B 97 D8 AF VMSA_REG_PROT

State ASID CCXs Guest Flags

LAUNCH 45 22 BB A9 17 63 4B 23 SEV-ES

…

Guest Context Pages
• After the UMC key seed has been programmed into the UMC, the encryption unit in the 

memory controller uses the address space identifier (ASID) to look up the encryption key 

for a guest.

• If we corrupt the ASID we can trick the firmware into using another guest’s encryption 

keys.



#BHUSA @BlackHatEvents

Offline Encryption IV Handle Policy

00 59 EF 80 2C 78 1D CE 4D 99 67 51 DEBUG

State ASID CCXs Guest Flags

INIT E8 5F 73 60 24 87 5B EA (empty)

…

Guest Context Pages
• After the UMC key seed has been programmed into the UMC, the encryption unit in the 

memory controller uses the address space identifier (ASID) to look up the encryption key 

for a guest.

• If we corrupt the ASID we can trick the firmware into using another guest’s encryption 

keys.

• If we also corrupt the Policy we can issue debug commands for that other guest.



#BHUSA @BlackHatEvents

Offline Encryption IV Handle Policy

00 59 EF 80 2C 78 1D CE 4D 99 67 51 DEBUG

State ASID CCXs Guest Flags

INIT E8 5F 73 60 24 87 5B EA (empty)

…

• After the UMC key seed has been programmed into the UMC, the encryption unit in the 

memory controller uses the address space identifier (ASID) to look up the encryption key 

for a guest.

• If we corrupt the ASID we can trick the firmware into using another guest’s encryption 

keys.

• If we also corrupt the Policy we can issue debug commands for that other guest.

• There are only relatively few valid ASIDs (<509 or <1006 depending on the CPU).

• We can query both the ASID and the policy using the GUEST_STATUS command.

Guest Context Pages



#BHUSA @BlackHatEvents

Offline Encryption IV Handle Policy

A9 AD C0 7D C3 40 CB 45 7E BC 36 4E SMT | DEBUG

State ASID CCXs Guest Flags

INIT F7 3E 19 2E 90 B3 52 C4 SEV-ES

…

Guest Context Pages
• After the UMC key seed has been programmed into the UMC, the encryption unit in the 

memory controller uses the address space identifier (ASID) to look up the encryption key 

for a guest.

• If we corrupt the ASID we can trick the firmware into using another guest’s encryption 

keys.

• If we also corrupt the Policy we can issue debug commands for that other guest.

• There are only relatively few valid ASIDs (<509 or <1006 depending on the CPU).

• We can query both the ASID and the policy using the GUEST_STATUS command.



#BHUSA @BlackHatEvents

Offline Encryption IV Handle Policy

A1 12 2B 90 00 7E AC F9 9E FA CA 73 SMT

State ASID CCXs Guest Flags

RUNNING FB 46 05 00 23 73 7A 01 SEV-ES

…

Guest Context Pages
• After the UMC key seed has been programmed into the UMC, the encryption unit in the 

memory controller uses the address space identifier (ASID) to look up the encryption key 

for a guest.

• If we corrupt the ASID we can trick the firmware into using another guest’s encryption 

keys.

• If we also corrupt the Policy we can issue debug commands for that other guest.

• There are only relatively few valid ASIDs (<509 or <1006 depending on the CPU).

• We can query both the ASID and the policy using the GUEST_STATUS command.



#BHUSA @BlackHatEvents

Offline Encryption IV Handle Policy

DE FD 97 D5 8F B9 1C F3 D1 7E 91 6E SMT | DEBUG

State ASID CCXs Guest Flags

INIT 89 1E 00 00 88 3F 71 91 (empty)

…

Guest Context Pages
• After the UMC key seed has been programmed into the UMC, the encryption unit in the 

memory controller uses the address space identifier (ASID) to look up the encryption key 

for a guest.

• If we corrupt the ASID we can trick the firmware into using another guest’s encryption 

keys.

• If we also corrupt the Policy we can issue debug commands for that other guest.

• There are only relatively few valid ASIDs (<509 or <1006 depending on the CPU).

• We can query both the ASID and the policy using the GUEST_STATUS command.



#BHUSA @BlackHatEvents

Offline Encryption IV Handle Policy

E8 D5 E6 AA 43 CA 81 7E 5D 85 15 06 DEBUG

State ASID CCXs Guest Flags

LAUNCH A4 01 00 00 61 3F 08 CF SEV-ES

…

Guest Context Pages
• After the UMC key seed has been programmed into the UMC, the encryption unit in the 

memory controller uses the address space identifier (ASID) to look up the encryption key 

for a guest.

• If we corrupt the ASID we can trick the firmware into using another guest’s encryption 

keys.

• If we also corrupt the Policy we can issue debug commands for that other guest.

• There are only relatively few valid ASIDs (<509 or <1006 depending on the CPU).

• We can query both the ASID and the policy using the GUEST_STATUS command.



#BHUSA @BlackHatEvents

Offline Encryption IV Handle Policy

E8 D5 E6 AA 43 CA 81 7E 5D 85 15 06 DEBUG

State ASID CCXs Guest Flags

LAUNCH A4 01 00 00 61 3F 08 CF SEV-ES

…

• We repeatedly corrupt guest context pages until hit an ASID < 509/1006 and Policy

allows debugging.

• The chances of getting everything right are about 1 in 20,000,000.

• We can corrupt 300 guest context pages per second.

• We expect to get a hit about once a day.

• This can be in advance before launching the victim guest.

Guest Context Pages



#BHUSA @BlackHatEvents

Exploit



#BHUSA @BlackHatEvents

Reusability of Exploits

• The exploits assume very little about the memory corruption:

• Fixed and random writes to RMP-protected memory are exploitable.

• Completely workload-independent

• A third bug I discovered, CVE-2023-31355, can be exploited using strategy #1 with very 

few changes.



#BHUSA @BlackHatEvents

Take-Aways

1. The hypervisor is very powerful:

Even very simple bugs can have a large security impact.

2. The firmware used by SEV (and other TEEs) deserves more 

attention from the researcher community.

3. Demand as much transparency as possible in all parts of the 

stack.



#BHUSA @BlackHatEvents

Thanks & Q/A

• Proof of Concepts are available on GitHub

• github.com/freax13/cve-2024-21980-poc

• github.com/freax13/cve-2024-21978-poc

• github.com/freax13/cve-2023-31355-poc

• Follow me on Twitter: @13erbse

https://github.com/freax13/cve-2024-21980-poc
https://github.com/freax13/cve-2024-21978-poc
https://github.com/freax13/cve-2023-31355-poc

	Intro
	Slide 1
	Slide 2: whoami
	Slide 3: Outline

	Introduction to SEV-SNP Concepts
	Slide 4: What‘s a TEE Anyway?
	Slide 5: Very Short Intro to AMD SEV-SNP
	Slide 6: Platform Security Processor (PSP)
	Slide 7: Reverse Map Table (RMP)
	Slide 8: Reverse Map Table (RMP)

	Bug #1
	Slide 9: CVE-2024-21980
	Slide 10: Command Dispatch
	Slide 11: Command Dispatch
	Slide 12: Command Dispatch
	Slide 13: Command Dispatch (w/o Response)
	Slide 14: Bug #1 One Of These It Not Like The Others…
	Slide 15: Command Dispatch
	Slide 16: Command Dispatch
	Slide 17: Command Dispatch
	Slide 18: Primitive Exploit
	Slide 19: Choosing a Target
	Slide 20: Choosing a Target
	Slide 21: Attacking the guest directly is possible, but … … It’s far from trivial and … … Exploits will likely have to be tailored to specific workloads.
	Slide 22: Attacking the Firmware
	Slide 23: Guest Context Pages
	Slide 24: Guest Context Pages
	Slide 25: Guest Context Pages
	Slide 26
	Slide 27: Guest Context Pages
	Slide 28: Guest Context Pages
	Slide 29: Guest Context Pages
	Slide 30: Guest Context Pages
	Slide 31: Guest Context Pages
	Slide 32: Guest Context Pages
	Slide 33: Guest Context Pages
	Slide 34: Guest Context Pages
	Slide 35: Location-Dependent Encryption
	Slide 36: Improved Exploit
	Slide 37: Demo
	Slide 38

	Bug #2
	Slide 39: CVE-2024-21978
	Slide 40: Bug #2
	Slide 41: Rough Plan of Attack
	Slide 42: Can We Better Than Exploit #1?
	Slide 43: Guest Context Pages
	Slide 44
	Slide 45: Guest Context Pages
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55: Exploit

	Outro
	Slide 56: Reusability of Exploits
	Slide 57: Take-Aways 
	Slide 58: Thanks & Q/A


