| e

| 4
blgc’:k hat
USA 2024

AUGUST 7-8, 2024

BRIEFINGS

Use Your Spell Against You: A Proactive Threat
Prevention of Smart Contract Exploit

Yajin Zhou
BlockSec & Zhejiang University

This work is a team effort of researchers from Zhejiang University and BlockSec.

Hailin Wang, Jianfeng Zhu, Hang Feng, Youwen Hu, Runhuai Li, Sheng Yu, Lei Wu, Yajin Zhou

#BHUSA @BlackHatEvents

bla‘n?:k hat

USA 2024

About Me

= Co-founder of BlockSec and Professor of Zhejiang University

= Research interests

= DeFi security, Blockchain system security
= Publish: 60+ papers with 9,000+ citations

= Hack and build systems

= Read more: hitps://yajin.org

https://blocksec.com/
https://yajin.org/

bla‘n?:k hat

USA 2024

Security Matters in Web3

200.00

180.00

LOSS
160.00

140.00

120.00

100.00

80.00

60.00

40.00

20.00

0.00

Despite the bull and bear cycles in the crypto market,
losses caused by exploits and scams have been growing at a rapid pace.

bla‘n?:k hat

USA 2024

Security Matters in Web3

Explorer > Security Incidents

.) https://app.blocksec.com/explorer/security-incidents
Security Incidents

The attack incidents causing losses exceeding $100K will be documented. “
All Bookmark
Project Loss Chain Vulnerability Date
+ Ronin Bridge <% 9 Misconfiguration 2024/08/06 1if Root Cause < Share
+ TokenStake (Unknown) <% - $578 K Vulnerable Price Dependency 2024/08/05 1if Root Cause < Share
+ Convergence ¥ - $210 K o Unverified User Input 2024/08/01 it Root Cause <. Share
+ Spectra ¥ - $550 K e Arbitrary Call 2024/07/23 it Root Cause < Share
+ DeltaPrime % 7 Misconfiguration 2024/07/22 1if Root Cause < Share
+ UPS ¢ - $521 K Business Logic Flaw 2024/07/21 1if Root Cause < Share
+ WazirX vy o Compromised Private Key 2024/07/18 1t Root Cause < Share
+ LI.FI % (47 Arbitrary Call 2024/07/16 iit Root Cause < Share
+ Minterest Finance % -~ $1.5 M * Reentrancy 2024/07/14 it Root Cause < Share

DeFi Security Incidents Dashboard

https://app.blocksec.com/explorer/security-incidents

bla‘n?:k hat

USA 2024

Why Security Incidents are Prevalent

= Economical incentive

= Hackers can get “paid”. Think about a house full of gold but without a
good security system

* Less security-qualified developers
= Developers are not trained well in security concepts

= DeFi composability: creates more attack vectors

bla‘n?:k hat

USA 2024

Why Security Incidents are Prevalent

= Openness: everyone can see the code on the chain, and
everyone can issue an attack tx if a vulnerability exists

= Anonymity: it's hard to trace (not impossible) the attacker if
he/she is smart enough to hide

= Flashloan: enlarge the money that an attacker can use

bla‘n?:k hat

USA 2024

Existing Approach

= Pre-launch
= Code auditing
= Fuzzing testing
= Formal verification

= Post-launch

= We think there should be an effective approach to detect and block
hacks after the protocol is deployed

bla‘n?:k hat

USA 2024

Steps of a DeFi Attack

= Prepare the attack

= Launch the attack

= Launder the profit

— 2) Create & Invoke — | ™= | — 3) Interact ———
— 1) Transfer In ———» p S
<+— 5) Transfer Funds —— <+— 4) Transfer Funds —

Gas Funding Attacker Account Attack Contract Victim Dapp

(TC, FixedFloat etc.)

bla‘n?:k hat

USA 2024

Our Approach

= The process of a transaction is confirmed

= T1: Atransaction is broadcasted to the p2p network
= T2: Every node on the network can listen to pending transactions
= T3: Validators confirm the transaction

Can we detect and block the attack transaction during the
time window of T1 and T3 (typically 12 seconds in Ethereum)

bla‘n?:k hat

USA 2024

Our Approach Determine whether it's

an attack transaction

o~
e S~ ~
P ” ~ ~
/ - S~ ~
g Ethereum Mempool
J— ¥ Transaction Profit
—— BoardCast —» ¥ — Listen —» Execution Result
¥| — . Execution Calculation
Attack Transaction ¥ | ¥ |
A
Test Tx Execution Result CashFlow && Executlon Result

Send Test Tx
Send Rescue Tx
Y A N N

Contract Reconstruction
&
Rescue Tx Building

Profit Transferring
Confirmation

—
S

O

blackhat
USA 2024

Background: Smart Contracts

« Can be called through transactions
« Contain code (bytecode)
* Are executed in EVM

USA 2024

Background: EVM

e Stack-based VM

EMPTY
STACK

i
L]

=
e
Al

|

f
!

1
'.

https://www.preethikasireddy.com/post/how-does-ethereum-work-anyway

bla‘n?:k hat

USA 2024

Challenges and Solutions

= How to extract attack logic from the attack contract

= The attack contract contains verification logic (of the caller) —in a
simple way or in an obfuscated way

= Callback functions

= Solutions: freezing conditional JUMP

« Leverage execution trace

bla‘n?:k hat

USA 2024

Challenges and Solutions

= How to locate and replace revenue addresses

= Revenue addresses are the ones that get profit during the attack
= We need to replace them with our ones

= Solutions: balance change table

= Build the balance change table
= Replace the addresses when they are pushed on the stack

bla‘n?:k hat

USA 2024

Challenges and Solutions

= How to identify the pre-conditions of an attack
= Auxiliary contracts
= Multiple transactions to launch an attack

= Solutions

= Dependency analysis if multiple transactions/contracts are involved

bla‘n?:k hat

USA 2024

Task One: Extract and Construct Attack Logic

= Automatically reconstruct a smart contract with the attack logic

= Attacks usually use some logic to protect their attack contacts

CALLER; i i | CALLER;
SLOAD 0; i i | SLOAD 0;
EQ; ; L EQ; :
PUSH attack_logic; ! ' | PUSH attack_logic;|
JUMPI; i i JUMP; |
________ T ' Reconstruct |
___________________________________ , v v i—’i v
i contrggt Attack{ i JUMPDEST; JUMPDEST;; | i JUMPDEST;
2un(r:-$sits)nmad[c1igci(i.(.e)'(ternal{ PUSH 0; PUSH 0x20; PUSH 0x20;
i rel der Ve PUSH 0; MLOAD; MLOAD;
t"?t.luue msg.sender == owner), \ REVERT; . .
2

i } i i Failed Logic Attack Logic i i Attack Logic

bla‘n?:k hat

USA 2024

Task One: Extract and Construct Attack Logic

= Option one: connect the opcode trace of an attack transaction

= |nput: opcode trace of an attack transaction

Generated contract

= Output: a new smart contract with the trace

Opcodel
Opcode?2
Opcode3
Opcode4
Opcodeb
Opcode6
Opcodel
Opcode2
Opcode3
Opcode4

Opcodel Opcode3 Opcode5 Opcode7
—_— Opcode?2 > Opcode4 > Opcode6 > Opcode8 —
JUMP JUMP JUMPI JUMP

Opcodeb
Opcode6
The trace Opcode?
Opcode8

bla‘n?:k hat

USA 2024

Task One: Extract and Construct Attack Logic

= Option one: connect the opcode trace of an attack transaction
= |t works theoretically but does not work in practice

= Contract size is limited — it will generate a large contract if the attack
has a loop Opcodet

Opcode?2
Opcode3
Opcode4
Opcodeb
Opcode6
Opcodel
Opcode2
Opcode3
Opcode4
Opcodeb
Opcode6
Opcode7
Opcode8

USA 2024

Task One: Extract and Construct Attack Logic

= Option two: reuse the basic block as much as possible
= |t works theoretically and in practice
= But the process is more complicated than the previous one

= We need to handle the JUMP instruction and fixup the offsets in the trace and our
generated contract S : T ;

r
JUMPDEST;
PUSH 0x20;
MLOAD;

CALLER; ! i | CALLER;

SLOAD @; | i | SLOAD @;

EQ; | | EQ; '

PUSH attack_logic; | i | PUSH attack_logic; ;

JUMPT; i E JUMP; H
________ —— ! Reconstruct !

l JUMPDEST;

! | JUMPDE l

JSH-OT
|| REVERT;

MLOAD; |
Offsets are different

| Failed Logic Attack Logic | i Attack Logic

bla‘n?:k hat

USA 2024

Freezing Conditional JUMP

= For simple JUMP and JUMPI -> replace with POP

PUSH target

PUSH target

XXX

target

condition

Trace

I
|
|
|
I
|
JUMP | JUMPI
PUSH target XXX : PUSH target
POP , POP
opcodel XXX I POP
opcode2 : opcodel
target | opcode2
JUMPDEST |
opcodel Stack : JUMPDEST
opcode2 Generated | 09003621 Generated
Smart : opcode Smart
Trace Contract ; Contract
|
|

Stack

bla‘n?:k hat

USA 2024

Freezing Conditional JUMP

= For JUMP with multiple targets

= The real target is determined in the runtime -> from which basic

block
. ra0
PUSH ra@; Internal Function
. JUMPDEST; }
MP; o o
| JUMP; MSTORE;
» POP; rai
r PUSH ral \ POP;
ral; .
o JWMP; JUMPDEST;
JUMP; ..

USA 2024

. o Internal Function fPUSH rao:
Freezing Conditional JUMP o
MSTORE; | . ’
POP; :)
. POP; PUSH ral;
= We compare the basic block and — J0MP;
use a trampoline to relocate the v \
PUSH ra@'; ra0' rat'
destination block oo .
EQ: ? \JUMPDEST; JUMPDEST;]
u raO -> rao, PU%H Trampoline;
JUMPT ;- -emnnenedennns : o A
+ral->ral | -
oUPZ; -] JUMPDEST,;
= Also, we need to make the stack PUSH ral, ; 0P
. ’ rampoline ; POP;
balance after the trampoline s eetres L o
STOP,) Trampoline

bla‘n?:k hat

USA 2024

Task Two: Identify and Replace Revenue Addresses

= Revenue addresses

= The ones that balance changes positively, and replacing them does not
affect the attack logic

= How to identify them: try-and-catch
= Calculate the balance changes
= Replace the ones with positive balance change to see what happens

= When: Replace them when they are pushed on the stack

bla‘n?:k hat

USA 2024

Task Two: Identify and Replace Revenue Addresses

Balance Change Computation
Balance Value Change
Change
CashFlow Analysis
Attack
Attack Contract Con?r(;ct 0 OETH
. Potential Revenue Address
Attack Transaction —— %%0 > 100 ETH >
(o) + ;
v 0xB ~160,000 DAI OETH 0xD
0xB 0xC oxD
0xC -100ETH 100 ETH
oxD +160,000 DAI +100 ETH

f

1 ETH= 1600 DAI

DEX Transaction » Oracle

bla‘n?:k hat

USA 2024

Task Three: Identify Pre-conditions

= Auxiliary contracts
= Contracts created by the attacker before or during the attack process —
they also contain the attack logic
= Multiple transactions

= An attack can consist of multiple transactions: T1, T2 prepare the
attack and T3 launches the attack

bla‘n?:k hat

USA 2024

Identify Auxiliary contracts

= Created during the attack: find CREATE/CREATEZ2 instruction
= Created before the attack: use REVERT to locate them

= The auxiliary will revert during the interaction (since we change the
caller when invoking the auxiliary contract)

= We track all the reverted internal calls to identify the auxiliary contract

J| If caller 1= 0x1234 {

Call contract B REVERT()}

Auxiliary contract

bla‘n?:k hat

USA 2024

|dentify Multiple Transactions

= Attackers can split the attack transaction into multiple ones

Invoke "Stake’ Invoke "Harvest’
Attack Contract Creation " Deposit 100 BUSD " Claim $30k Reward
into EGD Finance from EGD Finance

EGD Finance Attack Incident

bla‘n?:k hat

USA 2024

|dentify Multiple Transactions

 Our method

= We retrieve the state dependency search method to locate all
preparation transactions

= State-dependent: a transaction is using a storage changed by a
previous transaction

= Optimizations: cache state change called by a tx in (24 hours)

bla‘n?:k hat

USA 2024

Evaluation

 Effectiveness
= |f our system can successfully synthesize the attack tx and contract
with replaced revenue addresses, then our system is effective Iin
blocking that hack
* Dataset
= Historical attacks in DeFiHacklLabs: June 2020 to Februray 2023

= Real attacks

https://github.com/SunWeb3Sec/DeFiHackLabs

bla‘n?:k hat

USA 2024

Evaluation

e Dataset: 117 attacks in total, we use 87 of them
 The attack crosses different blocks
* They require some special tokens

« Among 87 attacks, we can successfully generate the attack

contracts
Feasibility Category Success Total
, Unable to finish in a single block 0 29
Not Feasible
Require special capital 0 4
Common attack 47 50

Feasible
Involve anti-front-running strategy 31 34

bla‘n?:k hat

USA 2024

Evaluation

« Reasons for failed cases

= Attack tx was too complicated with many auxiliary contracts — the
generated contract was too big (bigger than the maximum allowed
contract size)

bla‘n?:k hat

USA 2024

Real Cases

* Blocked hacks and rescued more than 20 million USDs

« Representative ones: ParaSpace: 5 Million, Saddle Finance: 3.8 million

Parallel Network &

@ParallelFi
We alongside @BlockSecTeam have identified the cause of the exploit that
occurred earlier on the ParaSpace protocol, and we are relieved to share

that all user funds and assets on ParaSpace are safe and secure. No NFTs
were compromised and financial losses to the protocol are minimal.

. Saddle @saddlefinance - Apr 30, 2022
The team is investigating a possible exploit and is pausing pool withdrawals

Q14 a7 Q95 il b &

. Saddle @saddlefinance - Apr 30, 2022
Correction: Only metapools are paused. Single-asset withdrawals are
currently restricted, but balanced pool withdrawals are always possible

O 0 On ihi [N We thank you for your patience while we calculated the financial impact of

the exploit.
Saddle

@saddlefinance

Thanks to @BlockSecTeam'’s technology and the swift actions taken by

White hat hackers @BlockSecTeam were able to secure $3.8m. The team
is in contact with them to return the funds

6:42 PM - Apr 30, 2022

the @BlockSecTeam team, losses from the protocol are minimal and we
were able to rescue the 2,909 ETH that the exploiter was attempting to
withdraw from the protocol.

https://blocksec.com/blog/lead-in-phalcon-s-hack-blocking-saga

bla‘n?:k hat

USA 2024

Distribution of Time Consumption

Evaluation

« Efficiency

= How quick to reconstruct the
attack contract

IS
o
1

A , M)y

Count of Incidents

= More than 80% cases are
finished in less than 25 ms

no
o
[l

3 3 3
2
1 1 1 1 1
W/A’i’/j/‘: 0 Y 0 r /JI’///W//.{ 0 ' 0 r//AI
5 50 75 100 125 150 175 200 225 250 275 300 325 350
Time Spent(ms)

o
n

bla‘n?:k hat

USA 2024

Phalcon
A Platform to Monitor and Block Hacks

Help users, protocol operators, traders, and everyone to perceive suspicious
transactions, get instant alerts and take automatic actions

Take Away Messages

 DeFI hack is still a serious threat

* We propose a post-launch security measure to detect and block
hacks

* |t automatically synthesizes a similar attack tx, but with replaced
revenue addresses in synthesized contracts

 We have rescued more than 20 million USDs

* The technique has been commercialized in Phalcon
» https://blocksec.com/phalcon

https://blocksec.com/phalcon
https://blocksec.com/phalcon

	Slide 1
	Slide 2: About Me
	Slide 3: Security Matters in Web3
	Slide 4: Security Matters in Web3
	Slide 5: Why Security Incidents are Prevalent
	Slide 6: Why Security Incidents are Prevalent
	Slide 7: Existing Approach
	Slide 8: Steps of a DeFi Attack
	Slide 9: Our Approach
	Slide 10: Our Approach
	Slide 11: Background: Smart Contracts
	Slide 12: Background: EVM
	Slide 13: Challenges and Solutions
	Slide 14: Challenges and Solutions
	Slide 15: Challenges and Solutions
	Slide 16: Task One: Extract and Construct Attack Logic
	Slide 17: Task One: Extract and Construct Attack Logic
	Slide 18: Task One: Extract and Construct Attack Logic
	Slide 19: Task One: Extract and Construct Attack Logic
	Slide 20: Freezing Conditional JUMP
	Slide 21: Freezing Conditional JUMP
	Slide 22: Freezing Conditional JUMP
	Slide 23: Task Two: Identify and Replace Revenue Addresses
	Slide 24: Task Two: Identify and Replace Revenue Addresses
	Slide 25: Task Three: Identify Pre-conditions
	Slide 26: Identify Auxiliary contracts
	Slide 27: Identify Multiple Transactions
	Slide 28: Identify Multiple Transactions
	Slide 29: Evaluation
	Slide 30: Evaluation
	Slide 31: Evaluation
	Slide 32: Real Cases
	Slide 33: Evaluation
	Slide 34: Take Away Messages

