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Security Matters in Web3
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TVL

LOSS

Despite the bull and bear cycles in the crypto market, 
losses caused by exploits and scams have been growing at a rapid pace.



Security Matters in Web3

#BHUSA  @BlackHatEventsDeFi Security Incidents Dashboard

https://app.blocksec.com/explorer/security-incidents
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Why Security Incidents are Prevalent

▪ Economical incentive

▪ Hackers can get “paid”. Think about a house full of gold but without a 

good security system

• Less security-qualified developers
▪ Developers are not trained well in security concepts 

▪ DeFi composability: creates more attack vectors
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Why Security Incidents are Prevalent

▪ Openness: everyone can see the code on the chain, and 

everyone can issue an attack tx if a vulnerability exists

▪ Anonymity: it’s hard to trace (not impossible) the attacker if 

he/she is smart enough to hide

▪ Flashloan: enlarge the money that an attacker can use
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Existing Approach

▪ Pre-launch

▪ Code auditing

▪ Fuzzing testing

▪ Formal verification

▪ Post-launch

▪ We think there should be an effective approach to detect and block 

hacks after the protocol is deployed
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Steps of a DeFi Attack

▪ Prepare the attack

▪ Launch the attack

▪ Launder the profit
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Our Approach

▪ The process of a transaction is confirmed

▪ T1: A transaction is broadcasted to the p2p network

▪ T2: Every node on the network can listen to pending transactions

▪ T3: Validators confirm the transaction

#BHUSA  @BlackHatEvents

Can we detect and block the attack transaction during the 
time window of T1 and T3 (typically 12 seconds in Ethereum)



Our Approach
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Determine whether it’s 
an attack transaction



Background: Smart Contracts

• Can be called through transactions

• Contain code (bytecode)

• Are executed in EVM
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Background: EVM

• Stack-based VM

https://www.preethikasireddy.com/post/how-does-ethereum-work-anyway

https://www.preethikasireddy.com/post/how-does-ethereum-work-anyway


Challenges and Solutions

▪ How to extract attack logic from the attack contract

▪ The attack contract contains verification logic (of the caller) – in a 

simple way or in an obfuscated way

▪ Callback functions

▪ Solutions: freezing conditional JUMP

▪ Leverage execution trace

#BHUSA  @BlackHatEvents



Challenges and Solutions

▪ How to locate and replace revenue addresses

▪ Revenue addresses are the ones that get profit during the attack

▪ We need to replace them with our ones

▪ Solutions: balance change table

▪ Build the balance change table

▪ Replace the addresses when they are pushed on the stack

#BHUSA  @BlackHatEvents



Challenges and Solutions

▪ How to identify the pre-conditions of an attack

▪ Auxiliary contracts

▪ Multiple transactions to launch an attack

▪ Solutions

▪ Dependency analysis if multiple transactions/contracts are involved
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Task One: Extract and Construct Attack Logic

▪ Automatically reconstruct a smart contract with the attack logic

▪ Attacks usually use some logic to protect their attack contacts

#BHUSA  @BlackHatEvents



Task One: Extract and Construct Attack Logic

▪ Option one: connect the opcode trace of an attack transaction

▪ Input: opcode trace of an attack transaction

▪ Output: a new smart contract with the trace 
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Task One: Extract and Construct Attack Logic

▪ Option one: connect the opcode trace of an attack transaction

▪ It works theoretically but does not work in practice

▪ Contract size is limited – it will generate a large contract if the attack 

has a loop
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Task One: Extract and Construct Attack Logic

▪ Option two: reuse the basic block as much as possible

▪ It works theoretically and in practice

▪ But the process is more complicated than the previous one

▪ We need to handle the JUMP instruction and fixup the offsets in the trace and our 

generated contract

#BHUSA  @BlackHatEvents

Offsets are different



Freezing Conditional JUMP

▪ For simple JUMP and JUMPI -> replace with POP
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Freezing Conditional JUMP

▪ For JUMP with multiple targets

▪ The real target is determined in the runtime -> from which basic 

block  
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Freezing Conditional JUMP

▪ We compare the basic block and 

use a trampoline to relocate the 

destination block

▪ ra0 -> ra0’

▪ ra1 -> ra1’

▪ Also, we need to make the stack 

balance after the trampoline 
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Task Two: Identify and Replace Revenue Addresses

▪ Revenue addresses

▪ The ones that balance changes positively, and replacing them does not 

affect the attack logic

▪ How to identify them: try-and-catch

▪ Calculate the balance changes

▪ Replace the ones with positive balance change to see what happens

▪ When: Replace them when they are pushed on the stack
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Task Two: Identify and Replace Revenue Addresses
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Task Three: Identify Pre-conditions

▪ Auxiliary contracts

▪ Contracts created by the attacker before or during the attack process – 

they also contain the attack logic

▪ Multiple transactions

▪ An attack can consist of multiple transactions: T1, T2 prepare the 

attack and T3 launches the attack

#BHUSA  @BlackHatEvents



Identify Auxiliary contracts

▪ Created during the attack: find CREATE/CREATE2 instruction

▪ Created before the attack: use REVERT to locate them

▪ The auxiliary will revert during the interaction (since we change the 

caller when invoking the auxiliary contract)

▪ We track all the reverted internal calls to identify the auxiliary contract 
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Call contract B 
If caller != 0x1234 {

REVERT()}

Auxiliary contract



▪ Attackers can split the attack transaction into multiple ones

Identify Multiple Transactions
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• Our method

▪ We retrieve the state dependency search method to locate all 

preparation transactions

▪ State-dependent: a transaction is using a storage changed by a 

previous transaction

▪ Optimizations: cache state change called by a tx in (24 hours)

Identify Multiple Transactions
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• Effectiveness

▪ If our system can successfully synthesize the attack tx and contract 

with replaced revenue addresses, then our system is effective in 

blocking that hack

• Dataset

▪ Historical attacks in DeFiHackLabs: June 2020 to Februray 2023

▪ Real attacks

Evaluation

#BHUSA  @BlackHatEvents

https://github.com/SunWeb3Sec/DeFiHackLabs


• Dataset: 117 attacks in total, we use 87 of them
• The attack crosses different blocks

• They require some special tokens

• Among 87 attacks, we can successfully generate the attack 
contracts

Evaluation
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• Reasons for failed cases

▪ Attack tx was too complicated with many auxiliary contracts – the 

generated contract was too big (bigger than the maximum allowed 

contract size)

Evaluation
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• Blocked hacks and rescued more than 20 million USDs

• Representative ones: ParaSpace: 5 Million, Saddle Finance: 3.8 million

Real Cases

#BHUSA  @BlackHatEventshttps://blocksec.com/blog/lead-in-phalcon-s-hack-blocking-saga
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• Efficiency

▪ How quick to reconstruct the 

attack contract

▪ More than 80% cases are 

finished in less than 25 ms

Evaluation
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• DeFi hack is still a serious threat

• We propose a post-launch security measure to detect and block 
hacks

• It automatically synthesizes a similar attack tx, but with replaced 

revenue addresses in synthesized contracts

• We have rescued more than 20 million USDs

• The technique has been commercialized in Phalcon
• https://blocksec.com/phalcon

Take Away Messages

#BHUSA  @BlackHatEvents

https://blocksec.com/phalcon
https://blocksec.com/phalcon
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