
#BHUSA @BlackHatEvents

Use Your Spell Against You: A Proactive Threat
Prevention of Smart Contract Exploit

Yajin Zhou

BlockSec & Zhejiang University

This work is a team effort of researchers from Zhejiang University and BlockSec.

Hailin Wang, Jianfeng Zhu, Hang Feng, Youwen Hu, Runhuai Li, Sheng Yu, Lei Wu, Yajin Zhou

About Me

▪ Co-founder of BlockSec and Professor of Zhejiang University

▪ Research interests

▪ DeFi security, Blockchain system security

▪ Publish: 60+ papers with 9,000+ citations

▪ Hack and build systems

▪ Read more: https://yajin.org

#BHUSA @BlackHatEvents

https://blocksec.com/
https://yajin.org/

Security Matters in Web3

#BHUSA @BlackHatEvents

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00
0
1
/0
1
/2
0
2
0

2
7
/0
1
/2
0
2
0

2
2
/0
2
/2
0
2
0

1
9
/0
3
/2
0
2
0

1
4
/0
4
/2
0
2
0

1
0
/0
5
/2
0
2
0

0
5
/0
6
/2
0
2
0

0
1
/0
7
/2
0
2
0

2
7
/0
7
/2
0
2
0

2
2
/0
8
/2
0
2
0

1
7
/0
9
/2
0
2
0

1
3
/1
0
/2
0
2
0

0
8
/1
1
/2
0
2
0

0
4
/1
2
/2
0
2
0

3
0
/1
2
/2
0
2
0

2
5
/0
1
/2
0
2
1

2
0
/0
2
/2
0
2
1

1
8
/0
3
/2
0
2
1

1
3
/0
4
/2
0
2
1

0
9
/0
5
/2
0
2
1

0
4
/0
6
/2
0
2
1

3
0
/0
6
/2
0
2
1

2
6
/0
7
/2
0
2
1

2
1
/0
8
/2
0
2
1

1
6
/0
9
/2
0
2
1

1
2
/1
0
/2
0
2
1

0
7
/1
1
/2
0
2
1

0
3
/1
2
/2
0
2
1

2
9
/1
2
/2
0
2
1

2
4
/0
1
/2
0
2
2

1
9
/0
2
/2
0
2
2

1
7
/0
3
/2
0
2
2

1
2
/0
4
/2
0
2
2

0
8
/0
5
/2
0
2
2

0
3
/0
6
/2
0
2
2

2
9
/0
6
/2
0
2
2

2
5
/0
7
/2
0
2
2

2
0
/0
8
/2
0
2
2

1
5
/0
9
/2
0
2
2

1
1
/1
0
/2
0
2
2

0
6
/1
1
/2
0
2
2

0
2
/1
2
/2
0
2
2

2
8
/1
2
/2
0
2
2

2
3
/0
1
/2
0
2
3

1
8
/0
2
/2
0
2
3

1
6
/0
3
/2
0
2
3

1
1
/0
4
/2
0
2
3

0
7
/0
5
/2
0
2
3

0
2
/0
6
/2
0
2
3

2
8
/0
6
/2
0
2
3

TVL

LOSS

Despite the bull and bear cycles in the crypto market,
losses caused by exploits and scams have been growing at a rapid pace.

Security Matters in Web3

#BHUSA @BlackHatEventsDeFi Security Incidents Dashboard

https://app.blocksec.com/explorer/security-incidents

https://app.blocksec.com/explorer/security-incidents

Why Security Incidents are Prevalent

▪ Economical incentive

▪ Hackers can get “paid”. Think about a house full of gold but without a

good security system

• Less security-qualified developers
▪ Developers are not trained well in security concepts

▪ DeFi composability: creates more attack vectors

#BHUSA @BlackHatEvents

Why Security Incidents are Prevalent

▪ Openness: everyone can see the code on the chain, and

everyone can issue an attack tx if a vulnerability exists

▪ Anonymity: it’s hard to trace (not impossible) the attacker if

he/she is smart enough to hide

▪ Flashloan: enlarge the money that an attacker can use

#BHUSA @BlackHatEvents

Existing Approach

▪ Pre-launch

▪ Code auditing

▪ Fuzzing testing

▪ Formal verification

▪ Post-launch

▪ We think there should be an effective approach to detect and block

hacks after the protocol is deployed

#BHUSA @BlackHatEvents

Steps of a DeFi Attack

▪ Prepare the attack

▪ Launch the attack

▪ Launder the profit

#BHUSA @BlackHatEvents

Our Approach

▪ The process of a transaction is confirmed

▪ T1: A transaction is broadcasted to the p2p network

▪ T2: Every node on the network can listen to pending transactions

▪ T3: Validators confirm the transaction

#BHUSA @BlackHatEvents

Can we detect and block the attack transaction during the
time window of T1 and T3 (typically 12 seconds in Ethereum)

Our Approach

#BHUSA @BlackHatEvents

Determine whether it’s
an attack transaction

Background: Smart Contracts

• Can be called through transactions

• Contain code (bytecode)

• Are executed in EVM

#BHUSA @BlackHatEvents

Background: EVM

• Stack-based VM

https://www.preethikasireddy.com/post/how-does-ethereum-work-anyway

https://www.preethikasireddy.com/post/how-does-ethereum-work-anyway

Challenges and Solutions

▪ How to extract attack logic from the attack contract

▪ The attack contract contains verification logic (of the caller) – in a

simple way or in an obfuscated way

▪ Callback functions

▪ Solutions: freezing conditional JUMP

▪ Leverage execution trace

#BHUSA @BlackHatEvents

Challenges and Solutions

▪ How to locate and replace revenue addresses

▪ Revenue addresses are the ones that get profit during the attack

▪ We need to replace them with our ones

▪ Solutions: balance change table

▪ Build the balance change table

▪ Replace the addresses when they are pushed on the stack

#BHUSA @BlackHatEvents

Challenges and Solutions

▪ How to identify the pre-conditions of an attack

▪ Auxiliary contracts

▪ Multiple transactions to launch an attack

▪ Solutions

▪ Dependency analysis if multiple transactions/contracts are involved

#BHUSA @BlackHatEvents

Task One: Extract and Construct Attack Logic

▪ Automatically reconstruct a smart contract with the attack logic

▪ Attacks usually use some logic to protect their attack contacts

#BHUSA @BlackHatEvents

Task One: Extract and Construct Attack Logic

▪ Option one: connect the opcode trace of an attack transaction

▪ Input: opcode trace of an attack transaction

▪ Output: a new smart contract with the trace

#BHUSA @BlackHatEvents

Opcode1

Opcode2

JUMP

Opcode3

Opcode4

JUMP

Opcode5

Opcode6

JUMPI

Opcode7

Opcode8

JUMP

The trace

Generated contract

Opcode1

Opcode2

Opcode3

Opcode4

Opcode5

Opcode6

Opcode1

Opcode2

Opcode3

Opcode4

Opcode5

Opcode6

Opcode7

Opcode8

Task One: Extract and Construct Attack Logic

▪ Option one: connect the opcode trace of an attack transaction

▪ It works theoretically but does not work in practice

▪ Contract size is limited – it will generate a large contract if the attack

has a loop

#BHUSA @BlackHatEvents

Opcode1

Opcode2

Opcode3

Opcode4

Opcode5

Opcode6

Opcode1

Opcode2

Opcode3

Opcode4

Opcode5

Opcode6

Opcode7

Opcode8

Task One: Extract and Construct Attack Logic

▪ Option two: reuse the basic block as much as possible

▪ It works theoretically and in practice

▪ But the process is more complicated than the previous one

▪ We need to handle the JUMP instruction and fixup the offsets in the trace and our

generated contract

#BHUSA @BlackHatEvents

Offsets are different

Freezing Conditional JUMP

▪ For simple JUMP and JUMPI -> replace with POP

#BHUSA @BlackHatEvents

PUSH target

JUMP

JUMPDEST

 opcode1

opcode2

PUSH target

POP

opcode1

opcode2

PUSH target

JUMPI

JUMPDEST

 opcode1

opcode2

PUSH target

POP

POP

opcode1

opcode2

target

xxx

xxx

Stack

Trace

Generated

Smart

Contract
Trace

Generated

Smart

Contract

condition

target

xxx

Stack

Freezing Conditional JUMP

▪ For JUMP with multiple targets

▪ The real target is determined in the runtime -> from which basic

block

#BHUSA @BlackHatEvents

Freezing Conditional JUMP

▪ We compare the basic block and

use a trampoline to relocate the

destination block

▪ ra0 -> ra0’

▪ ra1 -> ra1’

▪ Also, we need to make the stack

balance after the trampoline

#BHUSA @BlackHatEvents

Task Two: Identify and Replace Revenue Addresses

▪ Revenue addresses

▪ The ones that balance changes positively, and replacing them does not

affect the attack logic

▪ How to identify them: try-and-catch

▪ Calculate the balance changes

▪ Replace the ones with positive balance change to see what happens

▪ When: Replace them when they are pushed on the stack

#BHUSA @BlackHatEvents

Task Two: Identify and Replace Revenue Addresses

#BHUSA @BlackHatEvents

Task Three: Identify Pre-conditions

▪ Auxiliary contracts

▪ Contracts created by the attacker before or during the attack process –

they also contain the attack logic

▪ Multiple transactions

▪ An attack can consist of multiple transactions: T1, T2 prepare the

attack and T3 launches the attack

#BHUSA @BlackHatEvents

Identify Auxiliary contracts

▪ Created during the attack: find CREATE/CREATE2 instruction

▪ Created before the attack: use REVERT to locate them

▪ The auxiliary will revert during the interaction (since we change the

caller when invoking the auxiliary contract)

▪ We track all the reverted internal calls to identify the auxiliary contract

#BHUSA @BlackHatEvents

Call contract B
If caller != 0x1234 {

REVERT()}

Auxiliary contract

▪ Attackers can split the attack transaction into multiple ones

Identify Multiple Transactions

#BHUSA @BlackHatEvents

• Our method

▪ We retrieve the state dependency search method to locate all

preparation transactions

▪ State-dependent: a transaction is using a storage changed by a

previous transaction

▪ Optimizations: cache state change called by a tx in (24 hours)

Identify Multiple Transactions

#BHUSA @BlackHatEvents

• Effectiveness

▪ If our system can successfully synthesize the attack tx and contract

with replaced revenue addresses, then our system is effective in

blocking that hack

• Dataset

▪ Historical attacks in DeFiHackLabs: June 2020 to Februray 2023

▪ Real attacks

Evaluation

#BHUSA @BlackHatEvents

https://github.com/SunWeb3Sec/DeFiHackLabs

• Dataset: 117 attacks in total, we use 87 of them
• The attack crosses different blocks

• They require some special tokens

• Among 87 attacks, we can successfully generate the attack
contracts

Evaluation

#BHUSA @BlackHatEvents

• Reasons for failed cases

▪ Attack tx was too complicated with many auxiliary contracts – the

generated contract was too big (bigger than the maximum allowed

contract size)

Evaluation

#BHUSA @BlackHatEvents

• Blocked hacks and rescued more than 20 million USDs

• Representative ones: ParaSpace: 5 Million, Saddle Finance: 3.8 million

Real Cases

#BHUSA @BlackHatEventshttps://blocksec.com/blog/lead-in-phalcon-s-hack-blocking-saga

https://blocksec.com/blog/lead-in-phalcon-s-hack-blocking-saga

• Efficiency

▪ How quick to reconstruct the

attack contract

▪ More than 80% cases are

finished in less than 25 ms

Evaluation

#BHUSA @BlackHatEvents

• DeFi hack is still a serious threat

• We propose a post-launch security measure to detect and block
hacks

• It automatically synthesizes a similar attack tx, but with replaced

revenue addresses in synthesized contracts

• We have rescued more than 20 million USDs

• The technique has been commercialized in Phalcon
• https://blocksec.com/phalcon

Take Away Messages

#BHUSA @BlackHatEvents

https://blocksec.com/phalcon
https://blocksec.com/phalcon

	Slide 1
	Slide 2: About Me
	Slide 3: Security Matters in Web3
	Slide 4: Security Matters in Web3
	Slide 5: Why Security Incidents are Prevalent
	Slide 6: Why Security Incidents are Prevalent
	Slide 7: Existing Approach
	Slide 8: Steps of a DeFi Attack
	Slide 9: Our Approach
	Slide 10: Our Approach
	Slide 11: Background: Smart Contracts
	Slide 12: Background: EVM
	Slide 13: Challenges and Solutions
	Slide 14: Challenges and Solutions
	Slide 15: Challenges and Solutions
	Slide 16: Task One: Extract and Construct Attack Logic
	Slide 17: Task One: Extract and Construct Attack Logic
	Slide 18: Task One: Extract and Construct Attack Logic
	Slide 19: Task One: Extract and Construct Attack Logic
	Slide 20: Freezing Conditional JUMP
	Slide 21: Freezing Conditional JUMP
	Slide 22: Freezing Conditional JUMP
	Slide 23: Task Two: Identify and Replace Revenue Addresses
	Slide 24: Task Two: Identify and Replace Revenue Addresses
	Slide 25: Task Three: Identify Pre-conditions
	Slide 26: Identify Auxiliary contracts
	Slide 27: Identify Multiple Transactions
	Slide 28: Identify Multiple Transactions
	Slide 29: Evaluation
	Slide 30: Evaluation
	Slide 31: Evaluation
	Slide 32: Real Cases
	Slide 33: Evaluation
	Slide 34: Take Away Messages

